IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i9p1643-d227112.html
   My bibliography  Save this article

Flow Characteristics of Water-HPC Gel in Converging Tubes and Tapered Injectors

Author

Listed:
  • Qin-Liu Cao

    (School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China)

  • Mehrdad Massoudi

    (U.S. Department of Energy, National Energy Technology Laboratory (NETL), Pittsburgh, PA 15236, USA)

  • Wen-He Liao

    (School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China)

  • Feng Feng

    (School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China)

  • Wei-Tao Wu

    (School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China)

Abstract

Gelled fuels combine the main advantages of liquid fuels (throttle ability) and solid fuels (easy handling, etc.) due to their non-Newtonian characteristics. In this paper, we study the flow characteristics of water-hydroxypropylcellulose (HPC) gel in converging tubes and tapered injectors which mimic the flow and injection of kerosene gel in typical geometries of propulsion systems. The water-HPC gel is modeled as a non-linear fluid, where the shear viscosity is assumed to depend on the local shear rate and modeled by the Carreau–Yasuda model; the model parameters are fitted with our experimental measurements done by a rotational rheometer. The numerical simulations indicate that for the converging tubes, increasing the convergence angle, causes the mean apparent viscosity at tube exit to decrease while the mass flow rate reduces at a constant pressure drop. Therefore, there is a balance between the lowering of the pressure loss and reducing mean apparent viscosity. In the tapered injectors, the straight pipe after the converging part has a detrimental effect on the viscosity reduction.

Suggested Citation

  • Qin-Liu Cao & Mehrdad Massoudi & Wen-He Liao & Feng Feng & Wei-Tao Wu, 2019. "Flow Characteristics of Water-HPC Gel in Converging Tubes and Tapered Injectors," Energies, MDPI, vol. 12(9), pages 1-16, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1643-:d:227112
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/9/1643/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/9/1643/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei-Tao Wu & Nadine Aubry & James F. Antaki & Mark L. McKoy & Mehrdad Massoudi, 2017. "Heat Transfer in a Drilling Fluid with Geothermal Applications," Energies, MDPI, vol. 10(9), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Zhou & Feng Feng & Qin-Liu Cao & Changsheng Zhou & Wei-Tao Wu & Mehrdad Massoudi, 2022. "Heat Transfer and Flow of a Gel Fuel in Corrugated Channels," Energies, MDPI, vol. 15(19), pages 1-19, October.
    2. Meng-Ge Li & Feng Feng & Wei-Tao Wu & Mehrdad Massoudi, 2020. "Numerical Simulations of the Flow of a Dense Suspension Exhibiting Yield-Stress and Shear-Thinning Effects," Energies, MDPI, vol. 13(24), pages 1-21, December.
    3. Qin-Liu Cao & Wei-Tao Wu & Wen-He Liao & Feng Feng & Mehrdad Massoudi, 2020. "Effects of Temperature on the Flow and Heat Transfer in Gel Fuels: A Numerical Study," Energies, MDPI, vol. 13(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao-Hui Sun & Hongbin Yan & Mehrdad Massoudi & Zhi-Hua Chen & Wei-Tao Wu, 2018. "Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger," Energies, MDPI, vol. 11(4), pages 1-18, April.
    2. Chengcheng Tao & Barbara G. Kutchko & Eilis Rosenbaum & Wei-Tao Wu & Mehrdad Massoudi, 2019. "Steady Flow of a Cement Slurry," Energies, MDPI, vol. 12(13), pages 1-25, July.
    3. Xin Chang & Jun Zhou & Yintong Guo & Shiming He & Lei Wang & Yulin Chen & Ming Tang & Rui Jian, 2018. "Heat Transfer Behaviors in Horizontal Wells Considering the Effects of Drill Pipe Rotation, and Hydraulic and Mechanical Frictions during Drilling Procedures," Energies, MDPI, vol. 11(9), pages 1-28, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:9:p:1643-:d:227112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.