IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1791-d156867.html
   My bibliography  Save this article

Multi Objective Optimization in Charge Management of Micro Grid Based Multistory Carpark

Author

Listed:
  • Lukáš Prokop

    (Centre ENET at VŠB-TU Ostrava, 708 00 Ostrava, Czech Republic
    Department of Electric Power Engineering at Faculty of Electrical Engineering and Computer Science, VŠB-TU Ostrava, 708 00 Ostrava, Czech Republic)

  • Tomáš Vantuch

    (Centre ENET at VŠB-TU Ostrava, 708 00 Ostrava, Czech Republic
    Department of Computer Science at Faculty of Electrical Engineering and Computer Science, VŠB-TU Ostrava, 708 00 Ostrava, Czech Republic)

  • Stanislav Mišák

    (Centre ENET at VŠB-TU Ostrava, 708 00 Ostrava, Czech Republic
    Department of Electric Power Engineering at Faculty of Electrical Engineering and Computer Science, VŠB-TU Ostrava, 708 00 Ostrava, Czech Republic)

Abstract

Distributed power supply with the use of renewable energy sources and intelligent energy flow management has undoubtedly become one of the pressing trends in modern power engineering, which also inspired researchers from other fields to contribute to the topic. There are several kinds of micro grid platforms, each facing its own challenges and thus making the problem purely multi objective. In this paper, an evolutionary driven algorithm is applied and evaluated on a real platform represented by a private multistory carpark equipped with photovoltaic solar panels and several battery packs. The algorithm works as a core of an adaptive charge management system based on predicted conditions represented by estimated electric load and production in the future hours. The outcome of the paper is a comparison of the optimized and unoptimized charge management on three different battery setups proving that optimization may often outperform a battery setup with larger capacity in several criteria.

Suggested Citation

  • Lukáš Prokop & Tomáš Vantuch & Stanislav Mišák, 2018. "Multi Objective Optimization in Charge Management of Micro Grid Based Multistory Carpark," Energies, MDPI, vol. 11(7), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1791-:d:156867
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1791/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1791/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. María Garcés Quílez & Mohamed Abdel-Monem & Mohamed El Baghdadi & Yang Yang & Joeri Van Mierlo & Omar Hegazy, 2018. "Modelling, Analysis and Performance Evaluation of Power Conversion Unit in G2V/V2G Application—A Review," Energies, MDPI, vol. 11(5), pages 1-24, April.
    2. Yang, Zhile & Li, Kang & Foley, Aoife, 2015. "Computational scheduling methods for integrating plug-in electric vehicles with power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 396-416.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikita V. Martyushev & Boris V. Malozyomov & Svetlana N. Sorokova & Egor A. Efremenkov & Denis V. Valuev & Mengxu Qi, 2023. "Review Models and Methods for Determining and Predicting the Reliability of Technical Systems and Transport," Mathematics, MDPI, vol. 11(15), pages 1-31, July.
    2. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    3. Houssein Al Attar & Mohamed Assaad Hamida & Malek Ghanes & Miassa Taleb, 2023. "Review on Modeling and Control Strategies of DC–DC LLC Converters for Bidirectional Electric Vehicle Charger Applications," Energies, MDPI, vol. 16(9), pages 1-28, May.
    4. Graabak, Ingeborg & Wu, Qiuwei & Warland, Leif & Liu, Zhaoxi, 2016. "Optimal planning of the Nordic transmission system with 100% electric vehicle penetration of passenger cars by 2050," Energy, Elsevier, vol. 107(C), pages 648-660.
    5. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Dai, Guyu & Chai, Jianxue, 2022. "Cost compensation method for PEVs participating in dynamic economic dispatch based on carbon trading mechanism," Energy, Elsevier, vol. 239(PA).
    6. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    7. Riccardo Iacobucci & Benjamin McLellan & Tetsuo Tezuka, 2018. "The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid," Energies, MDPI, vol. 11(8), pages 1-20, August.
    8. Yang, Wenjun & Guo, Jia & Vartosh, Aris, 2022. "Optimal economic-emission planning of multi-energy systems integrated electric vehicles with modified group search optimization," Applied Energy, Elsevier, vol. 311(C).
    9. Tuchnitz, Felix & Ebell, Niklas & Schlund, Jonas & Pruckner, Marco, 2021. "Development and Evaluation of a Smart Charging Strategy for an Electric Vehicle Fleet Based on Reinforcement Learning," Applied Energy, Elsevier, vol. 285(C).
    10. Hasan Huseyin Coban & Wojciech Lewicki & Ewelina Sendek-Matysiak & Zbigniew Łosiewicz & Wojciech Drożdż & Radosław Miśkiewicz, 2022. "Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System," Energies, MDPI, vol. 15(21), pages 1-19, November.
    11. Collath, Nils & Cornejo, Martin & Engwerth, Veronika & Hesse, Holger & Jossen, Andreas, 2023. "Increasing the lifetime profitability of battery energy storage systems through aging aware operation," Applied Energy, Elsevier, vol. 348(C).
    12. Adil Amin & Wajahat Ullah Khan Tareen & Muhammad Usman & Haider Ali & Inam Bari & Ben Horan & Saad Mekhilef & Muhammad Asif & Saeed Ahmed & Anzar Mahmood, 2020. "A Review of Optimal Charging Strategy for Electric Vehicles under Dynamic Pricing Schemes in the Distribution Charging Network," Sustainability, MDPI, vol. 12(23), pages 1-28, December.
    13. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    14. Parhizkar, Tarannom & Mosleh, Ali & Roshandel, Ramin, 2017. "Aging based optimal scheduling framework for power plants using equivalent operating hour approach," Applied Energy, Elsevier, vol. 205(C), pages 1345-1363.
    15. Panpan Mei & Lianghong Wu & Hongqiang Zhang & Zhenzu Liu, 2019. "A Hybrid Multi-Objective Crisscross Optimization for Dynamic Economic/Emission Dispatch Considering Plug-In Electric Vehicles Penetration," Energies, MDPI, vol. 12(20), pages 1-21, October.
    16. Nezamoddini, Nasim & Wang, Yong, 2016. "Risk management and participation planning of electric vehicles in smart grids for demand response," Energy, Elsevier, vol. 116(P1), pages 836-850.
    17. Yang Yang & Mohamed El Baghdadi & Yuanfeng Lan & Yassine Benomar & Joeri Van Mierlo & Omar Hegazy, 2018. "Design Methodology, Modeling, and Comparative Study of Wireless Power Transfer Systems for Electric Vehicles," Energies, MDPI, vol. 11(7), pages 1-22, July.
    18. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    19. Fescioglu-Unver, Nilgun & Yıldız Aktaş, Melike, 2023. "Electric vehicle charging service operations: A review of machine learning applications for infrastructure planning, control, pricing and routing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    20. Jun Yang & Wanmeng Hao & Lei Chen & Jiejun Chen & Jing Jin & Feng Wang, 2016. "Risk Assessment of Distribution Networks Considering the Charging-Discharging Behaviors of Electric Vehicles," Energies, MDPI, vol. 9(7), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1791-:d:156867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.