IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1775-d156562.html
   My bibliography  Save this article

Diagnosis of DC Bias in Power Transformers Using Vibration Feature Extraction and a Pattern Recognition Method

Author

Listed:
  • Xiaowen Wu

    (State Grid Hunan Electric Power Corporation Research Institute, Changsha 410007, China)

  • Ling Li

    (School of Electrical Engineering, Wuhan University, Wuhan 430072, China)

  • Nianguang Zhou

    (State Grid Hunan Electric Power Corporation Research Institute, Changsha 410007, China)

  • Ling Lu

    (State Grid Hunan Electric Power Corporation Research Institute, Changsha 410007, China)

  • Sheng Hu

    (State Grid Hunan Electric Power Corporation Research Institute, Changsha 410007, China)

  • Hao Cao

    (State Grid Hunan Electric Power Corporation Research Institute, Changsha 410007, China)

  • Zhiqiang He

    (State Grid Hunan Electric Power Corporation Research Institute, Changsha 410007, China)

Abstract

DC bias is a great threat to the safe operation of power transformers. This paper deals with a new vibration-based technique to diagnose DC bias in power transformers. With this technique, the DC bias status of power transformers can be automatically recognized. The vibration variation process of a 500 kV autotransformer is tested under the influence of DC bias in the monopole trail operation stage of a ±800 kV HVDC transmission system. Comparison of transformer vibration under normal and DC-biased conditions is conducted. Three features are proposed and are validated by sensitivity analysis. The principal component analysis method is employed for feature de-correlation and dimensionality reduction. The least square support vector machine algorithm is used and verified successful in DC bias recognition. A remote on-line monitoring device based on the proposed algorithm is designed and applied in field DC bias diagnosis of power transformers. The suggested diagnostic algorithm and monitoring device could be useful in targeted DC bias control and improving the safe operation level of power transformers.

Suggested Citation

  • Xiaowen Wu & Ling Li & Nianguang Zhou & Ling Lu & Sheng Hu & Hao Cao & Zhiqiang He, 2018. "Diagnosis of DC Bias in Power Transformers Using Vibration Feature Extraction and a Pattern Recognition Method," Energies, MDPI, vol. 11(7), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1775-:d:156562
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1775/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1775/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Radu Godina & Eduardo M. G. Rodrigues & João C. O. Matias & João P. S. Catalão, 2015. "Effect of Loads and Other Key Factors on Oil-Transformer Ageing: Sustainability Benefits and Challenges," Energies, MDPI, vol. 8(10), pages 1-40, October.
    2. Lei Peng & Qiang Fu & Yaohong Zhao & Yihua Qian & Tiansheng Chen & Shengping Fan, 2018. "A Non-Destructive Optical Method for the DP Measurement of Paper Insulation Based on the Free Fibers in Transformer Oil," Energies, MDPI, vol. 11(4), pages 1-9, March.
    3. Qunli Wu & Chenyang Peng, 2016. "A Least Squares Support Vector Machine Optimized by Cloud-Based Evolutionary Algorithm for Wind Power Generation Prediction," Energies, MDPI, vol. 9(8), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jose R. Huerta-Rosales & David Granados-Lieberman & Juan P. Amezquita-Sanchez & Arturo Garcia-Perez & Maximiliano Bueno-Lopez & Martin Valtierra-Rodriguez, 2022. "Contrast Estimation in Vibroacoustic Signals for Diagnosing Early Faults of Short-Circuited Turns in Transformers under Different Load Conditions," Energies, MDPI, vol. 15(22), pages 1-15, November.
    2. Lianguang Liu & Zebang Yu & Zhe Jiang & Jianhong Hao & Wenlin Liu, 2019. "Observation Research on the Effect of UHVDC Grounding Current on Buried Pipelines," Energies, MDPI, vol. 12(7), pages 1-11, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Przybylek, 2018. "A New Concept of Applying Methanol to Dry Cellulose Insulation at the Stage of Manufacturing a Transformer," Energies, MDPI, vol. 11(7), pages 1-13, June.
    2. Fabio Henrique Pereira & Francisco Elânio Bezerra & Shigueru Junior & Josemir Santos & Ivan Chabu & Gilberto Francisco Martha de Souza & Fábio Micerino & Silvio Ikuyo Nabeta, 2018. "Nonlinear Autoregressive Neural Network Models for Prediction of Transformer Oil-Dissolved Gas Concentrations," Energies, MDPI, vol. 11(7), pages 1-12, June.
    3. Kakou D. Kouassi & Issouf Fofana & Ladji Cissé & Yazid Hadjadj & Kouba M. Lucia Yapi & K. Ambroise Diby, 2018. "Impact of Low Molecular Weight Acids on Oil Impregnated Paper Insulation Degradation," Energies, MDPI, vol. 11(6), pages 1-13, June.
    4. Miro Antonijević & Stjepan Sučić & Hrvoje Keserica, 2018. "Augmented Reality Applications for Substation Management by Utilizing Standards-Compliant SCADA Communication," Energies, MDPI, vol. 11(3), pages 1-17, March.
    5. Lefeng Cheng & Tao Yu & Guoping Wang & Bo Yang & Lv Zhou, 2018. "Hot Spot Temperature and Grey Target Theory-Based Dynamic Modelling for Reliability Assessment of Transformer Oil-Paper Insulation Systems: A Practical Case Study," Energies, MDPI, vol. 11(1), pages 1-26, January.
    6. Jiefeng Liu & Hanbo Zheng & Yiyi Zhang & Hua Wei & Ruijin Liao, 2017. "Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement," Energies, MDPI, vol. 10(10), pages 1-16, October.
    7. Jun Jiang & Mingxin Zhao & Chaohai Zhang & Min Chen & Haojun Liu & Ricardo Albarracín, 2018. "Partial Discharge Analysis in High-Frequency Transformer Based on High-Frequency Current Transducer," Energies, MDPI, vol. 11(8), pages 1-13, August.
    8. Ruohan Gong & Jiangjun Ruan & Jingzhou Chen & Yu Quan & Jian Wang & Cihan Duan, 2017. "Analysis and Experiment of Hot-Spot Temperature Rise of 110 kV Three-Phase Three-Limb Transformer," Energies, MDPI, vol. 10(8), pages 1-12, July.
    9. Feng Yang & Lin Du & Lijun Yang & Chao Wei & Youyuan Wang & Liman Ran & Peng He, 2018. "A Parameterization Approach for the Dielectric Response Model of Oil Paper Insulation Using FDS Measurements," Energies, MDPI, vol. 11(3), pages 1-17, March.
    10. Álvaro Jaramillo-Duque & Nicolás Muñoz-Galeano & José R. Ortiz-Castrillón & Jesús M. López-Lezama & Ricardo Albarracín-Sánchez, 2018. "Power Loss Minimization for Transformers Connected in Parallel with Taps Based on Power Chargeability Balance," Energies, MDPI, vol. 11(2), pages 1-12, February.
    11. Grzegorz Dombek & Zbigniew Nadolny & Piotr Przybylek & Radoslaw Lopatkiewicz & Agnieszka Marcinkowska & Lukasz Druzynski & Tomasz Boczar & Andrzej Tomczewski, 2020. "Effect of Moisture on the Thermal Conductivity of Cellulose and Aramid Paper Impregnated with Various Dielectric Liquids," Energies, MDPI, vol. 13(17), pages 1-17, August.
    12. Godina, Radu & Rodrigues, Eduardo M.G. & Matias, João C.O. & Catalão, João P.S., 2016. "Smart electric vehicle charging scheduler for overloading prevention of an industry client power distribution transformer," Applied Energy, Elsevier, vol. 178(C), pages 29-42.
    13. Francisco Martínez-Álvarez & Alicia Troncoso & José C. Riquelme, 2017. "Recent Advances in Energy Time Series Forecasting," Energies, MDPI, vol. 10(6), pages 1-3, June.
    14. Xiaojun Tang & Wenjing Wang & Xuliang Zhang & Erzhen Wang & Xuanjiannan Li, 2018. "On-Line Analysis of Oil-Dissolved Gas in Power Transformers Using Fourier Transform Infrared Spectrometry," Energies, MDPI, vol. 11(11), pages 1-15, November.
    15. Yiyi Zhang & Jiefeng Liu & Hanbo Zheng & Hua Wei & Ruijin Liao, 2017. "Study on Quantitative Correlations between the Ageing Condition of Transformer Cellulose Insulation and the Large Time Constant Obtained from the Extended Debye Model," Energies, MDPI, vol. 10(11), pages 1-17, November.
    16. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    17. Aya Amer & Khaled Shaban & Ahmed Gaouda & Ahmed Massoud, 2021. "Home Energy Management System Embedded with a Multi-Objective Demand Response Optimization Model to Benefit Customers and Operators," Energies, MDPI, vol. 14(2), pages 1-19, January.
    18. Huiru Zhao & Guo Huang & Ning Yan, 2018. "Forecasting Energy-Related CO 2 Emissions Employing a Novel SSA-LSSVM Model: Considering Structural Factors in China," Energies, MDPI, vol. 11(4), pages 1-21, March.
    19. Bhaskar P. Rimal & Cuiyu Kong & Bikrant Poudel & Yong Wang & Pratima Shahi, 2022. "Smart Electric Vehicle Charging in the Era of Internet of Vehicles, Emerging Trends, and Open Issues," Energies, MDPI, vol. 15(5), pages 1-24, March.
    20. Dongxiao Niu & Di Pu & Shuyu Dai, 2018. "Ultra-Short-Term Wind-Power Forecasting Based on the Weighted Random Forest Optimized by the Niche Immune Lion Algorithm," Energies, MDPI, vol. 11(5), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1775-:d:156562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.