IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i8p585-d74852.html
   My bibliography  Save this article

A Least Squares Support Vector Machine Optimized by Cloud-Based Evolutionary Algorithm for Wind Power Generation Prediction

Author

Listed:
  • Qunli Wu

    (Department of Economics and Management, North China Electric Power University, 689 Huadian Road, Baoding 071003, China)

  • Chenyang Peng

    (Department of Economics and Management, North China Electric Power University, 689 Huadian Road, Baoding 071003, China)

Abstract

Accurate wind power generation prediction, which has positive implications for making full use of wind energy, seems still a critical issue and a huge challenge. In this paper, a novel hybrid approach has been proposed for wind power generation forecasting in the light of Cloud-Based Evolutionary Algorithm (CBEA) and Least Squares Support Vector Machine (LSSVM). In order to improve the forecasting precision, a two-way comparison approach is conducted to preprocess the original wind power generation data. The pertinent parameters of LSSVM are optimized by using CBEA to verify the learning and generalization abilities of the LSSVM model. The experimental results indicate that the forecasting performance of the proposed model is better than the single LSSVM model and all of the other models for comparison. Moreover, the paired-sample t -test is employed to cast light on the applicability of the developed model.

Suggested Citation

  • Qunli Wu & Chenyang Peng, 2016. "A Least Squares Support Vector Machine Optimized by Cloud-Based Evolutionary Algorithm for Wind Power Generation Prediction," Energies, MDPI, vol. 9(8), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:585-:d:74852
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/8/585/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/8/585/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Guo, Zhenhai & Zhao, Jing & Zhang, Wenyu & Wang, Jianzhou, 2011. "A corrected hybrid approach for wind speed prediction in Hexi Corridor of China," Energy, Elsevier, vol. 36(3), pages 1668-1679.
    2. Monfared, Mohammad & Rastegar, Hasan & Kojabadi, Hossein Madadi, 2009. "A new strategy for wind speed forecasting using artificial intelligent methods," Renewable Energy, Elsevier, vol. 34(3), pages 845-848.
    3. Wei Sun & Mohan Liu & Yi Liang, 2015. "Wind Speed Forecasting Based on FEEMD and LSSVM Optimized by the Bat Algorithm," Energies, MDPI, vol. 8(7), pages 1-23, June.
    4. Liu, Hui & Tian, Hong-qi & Li, Yan-fei, 2012. "Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction," Applied Energy, Elsevier, vol. 98(C), pages 415-424.
    5. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "Models for monitoring wind farm power," Renewable Energy, Elsevier, vol. 34(3), pages 583-590.
    6. Cassola, Federico & Burlando, Massimiliano, 2012. "Wind speed and wind energy forecast through Kalman filtering of Numerical Weather Prediction model output," Applied Energy, Elsevier, vol. 99(C), pages 154-166.
    7. Maria Grazia De Giorgi & Stefano Campilongo & Antonio Ficarella & Paolo Maria Congedo, 2014. "Comparison Between Wind Power Prediction Models Based on Wavelet Decomposition with Least-Squares Support Vector Machine (LS-SVM) and Artificial Neural Network (ANN)," Energies, MDPI, vol. 7(8), pages 1-22, August.
    8. Li, Gong & Shi, Jing, 2010. "On comparing three artificial neural networks for wind speed forecasting," Applied Energy, Elsevier, vol. 87(7), pages 2313-2320, July.
    9. Wang, Jian-Zhou & Wang, Yun & Jiang, Ping, 2015. "The study and application of a novel hybrid forecasting model – A case study of wind speed forecasting in China," Applied Energy, Elsevier, vol. 143(C), pages 472-488.
    10. Liu, Hui & Tian, Hong-Qi & Chen, Chao & Li, Yan-fei, 2010. "A hybrid statistical method to predict wind speed and wind power," Renewable Energy, Elsevier, vol. 35(8), pages 1857-1861.
    11. Liu, Heping & Erdem, Ergin & Shi, Jing, 2011. "Comprehensive evaluation of ARMA-GARCH(-M) approaches for modeling the mean and volatility of wind speed," Applied Energy, Elsevier, vol. 88(3), pages 724-732, March.
    12. Jiang, Yu & Song, Zhe & Kusiak, Andrew, 2013. "Very short-term wind speed forecasting with Bayesian structural break model," Renewable Energy, Elsevier, vol. 50(C), pages 637-647.
    13. Ait Maatallah, Othman & Achuthan, Ajit & Janoyan, Kerop & Marzocca, Pier, 2015. "Recursive wind speed forecasting based on Hammerstein Auto-Regressive model," Applied Energy, Elsevier, vol. 145(C), pages 191-197.
    14. Erdem, Ergin & Shi, Jing, 2011. "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, Elsevier, vol. 88(4), pages 1405-1414, April.
    15. Foley, Aoife M. & Leahy, Paul G. & Marvuglia, Antonino & McKeogh, Eamon J., 2012. "Current methods and advances in forecasting of wind power generation," Renewable Energy, Elsevier, vol. 37(1), pages 1-8.
    16. Zuluaga, Carlos D. & Álvarez, Mauricio A. & Giraldo, Eduardo, 2015. "Short-term wind speed prediction based on robust Kalman filtering: An experimental comparison," Applied Energy, Elsevier, vol. 156(C), pages 321-330.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pingping Yun & Yongfeng Ren & Yu Xue, 2018. "Energy-Storage Optimization Strategy for Reducing Wind Power Fluctuation via Markov Prediction and PSO Method," Energies, MDPI, vol. 11(12), pages 1-23, December.
    2. Jujie Wang & Yanfeng Wang & Yaning Li, 2018. "A Novel Hybrid Strategy Using Three-Phase Feature Extraction and a Weighted Regularized Extreme Learning Machine for Multi-Step Ahead Wind Speed Prediction," Energies, MDPI, vol. 11(2), pages 1-33, February.
    3. Xiao-Fang Liu & Zhi-Hui Zhan & Jun Zhang, 2017. "An Energy Aware Unified Ant Colony System for Dynamic Virtual Machine Placement in Cloud Computing," Energies, MDPI, vol. 10(5), pages 1-15, May.
    4. Fang Liu & Ranran Li & Aliona Dreglea, 2019. "Wind Speed and Power Ultra Short-Term Robust Forecasting Based on Takagi–Sugeno Fuzzy Model," Energies, MDPI, vol. 12(18), pages 1-16, September.
    5. Huiru Zhao & Guo Huang & Ning Yan, 2018. "Forecasting Energy-Related CO 2 Emissions Employing a Novel SSA-LSSVM Model: Considering Structural Factors in China," Energies, MDPI, vol. 11(4), pages 1-21, March.
    6. Francisco Martínez-Álvarez & Alicia Troncoso & José C. Riquelme, 2017. "Recent Advances in Energy Time Series Forecasting," Energies, MDPI, vol. 10(6), pages 1-3, June.
    7. Xiaowen Wu & Ling Li & Nianguang Zhou & Ling Lu & Sheng Hu & Hao Cao & Zhiqiang He, 2018. "Diagnosis of DC Bias in Power Transformers Using Vibration Feature Extraction and a Pattern Recognition Method," Energies, MDPI, vol. 11(7), pages 1-20, July.
    8. Dongxiao Niu & Di Pu & Shuyu Dai, 2018. "Ultra-Short-Term Wind-Power Forecasting Based on the Weighted Random Forest Optimized by the Niche Immune Lion Algorithm," Energies, MDPI, vol. 11(5), pages 1-21, April.
    9. Shuxia Yang & Xianguo Zhu & Shengjiang Peng, 2020. "Prospect Prediction of Terminal Clean Power Consumption in China via LSSVM Algorithm Based on Improved Evolutionary Game Theory," Energies, MDPI, vol. 13(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
    2. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    3. Qunli Wu & Chenyang Peng, 2016. "Wind Power Generation Forecasting Using Least Squares Support Vector Machine Combined with Ensemble Empirical Mode Decomposition, Principal Component Analysis and a Bat Algorithm," Energies, MDPI, vol. 9(4), pages 1-19, April.
    4. Zhao, Weigang & Wei, Yi-Ming & Su, Zhongyue, 2016. "One day ahead wind speed forecasting: A resampling-based approach," Applied Energy, Elsevier, vol. 178(C), pages 886-901.
    5. Wang, Jianzhou & Xiong, Shenghua, 2014. "A hybrid forecasting model based on outlier detection and fuzzy time series – A case study on Hainan wind farm of China," Energy, Elsevier, vol. 76(C), pages 526-541.
    6. Qunli Wu & Huaxing Lin, 2019. "Short-Term Wind Speed Forecasting Based on Hybrid Variational Mode Decomposition and Least Squares Support Vector Machine Optimized by Bat Algorithm Model," Sustainability, MDPI, vol. 11(3), pages 1-18, January.
    7. Tian, Chengshi & Hao, Yan & Hu, Jianming, 2018. "A novel wind speed forecasting system based on hybrid data preprocessing and multi-objective optimization," Applied Energy, Elsevier, vol. 231(C), pages 301-319.
    8. Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
    9. Yang, Zhongshan & Wang, Jian, 2018. "A combination forecasting approach applied in multistep wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Applied Energy, Elsevier, vol. 230(C), pages 1108-1125.
    10. Qunli Wu & Chenyang Peng, 2015. "Wind Power Grid Connected Capacity Prediction Using LSSVM Optimized by the Bat Algorithm," Energies, MDPI, vol. 8(12), pages 1-15, December.
    11. Zhao, Jing & Guo, Yanling & Xiao, Xia & Wang, Jianzhou & Chi, Dezhong & Guo, Zhenhai, 2017. "Multi-step wind speed and power forecasts based on a WRF simulation and an optimized association method," Applied Energy, Elsevier, vol. 197(C), pages 183-202.
    12. Feng, Cong & Cui, Mingjian & Hodge, Bri-Mathias & Zhang, Jie, 2017. "A data-driven multi-model methodology with deep feature selection for short-term wind forecasting," Applied Energy, Elsevier, vol. 190(C), pages 1245-1257.
    13. Liu, Hui & Tian, Hong-qi & Liang, Xi-feng & Li, Yan-fei, 2015. "Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks," Applied Energy, Elsevier, vol. 157(C), pages 183-194.
    14. Chen, Kuilin & Yu, Jie, 2014. "Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach," Applied Energy, Elsevier, vol. 113(C), pages 690-705.
    15. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    16. Koo, Junmo & Han, Gwon Deok & Choi, Hyung Jong & Shim, Joon Hyung, 2015. "Wind-speed prediction and analysis based on geological and distance variables using an artificial neural network: A case study in South Korea," Energy, Elsevier, vol. 93(P2), pages 1296-1302.
    17. Liu, Hui & Tian, Hong-qi & Pan, Di-fu & Li, Yan-fei, 2013. "Forecasting models for wind speed using wavelet, wavelet packet, time series and Artificial Neural Networks," Applied Energy, Elsevier, vol. 107(C), pages 191-208.
    18. Erasmo Cadenas & Wilfrido Rivera & Rafael Campos-Amezcua & Christopher Heard, 2016. "Wind Speed Prediction Using a Univariate ARIMA Model and a Multivariate NARX Model," Energies, MDPI, vol. 9(2), pages 1-15, February.
    19. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    20. Wang, Jianzhou & Hu, Jianming & Ma, Kailiang & Zhang, Yixin, 2015. "A self-adaptive hybrid approach for wind speed forecasting," Renewable Energy, Elsevier, vol. 78(C), pages 374-385.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:585-:d:74852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.