IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8508-d972412.html
   My bibliography  Save this article

Contrast Estimation in Vibroacoustic Signals for Diagnosing Early Faults of Short-Circuited Turns in Transformers under Different Load Conditions

Author

Listed:
  • Jose R. Huerta-Rosales

    (ENAP-Research Group, CA-Sistemas Dinámicos y Control, Laboratorio de Sistemas y Equipos Eléctricos (LaSEE), Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río 76807, Querétaro, Mexico)

  • David Granados-Lieberman

    (ENAP-Research Group, CA-Fuentes Alternas y Calidad de la Energía Eléctrica, Departamento de Ingeniería Electromecánica, Tecnológico Nacional de México, Instituto Tecnológico Superior de Irapuato (ITESI), Carretera Irapuato-Silao km 12.5, Colonia El Copal, Irapuato 36821, Guanajuato, Mexico)

  • Juan P. Amezquita-Sanchez

    (ENAP-Research Group, CA-Sistemas Dinámicos y Control, Laboratorio de Sistemas y Equipos Eléctricos (LaSEE), Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río 76807, Querétaro, Mexico)

  • Arturo Garcia-Perez

    (ENAP-Research Group, División de Ingenierías, Universidad de Guanajuato, Campus Irapuato-Salamanca, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8 km, Comunidad de Palo Blanco, Salamanca 36885, Guanajuato, Mexico)

  • Maximiliano Bueno-Lopez

    (Department of Electronics, Instrumentation, and Control, Universidad del Cauca, Popayán 190002, Cauca, Colombia)

  • Martin Valtierra-Rodriguez

    (ENAP-Research Group, CA-Sistemas Dinámicos y Control, Laboratorio de Sistemas y Equipos Eléctricos (LaSEE), Facultad de Ingeniería, Universidad Autónoma de Querétaro (UAQ), Campus San Juan del Río, Río Moctezuma 249, Col. San Cayetano, San Juan del Río 76807, Querétaro, Mexico)

Abstract

The transformer is one of the most important electrical machines in electrical systems. Its proper operation is fundamental for the distribution and transmission of electrical energy. During its service life, it is under continuous electrical and mechanical stresses that can produce diverse types of damage. Among them, short-circuited turns (SCTs) in the windings are one of the main causes of the transformer fault; therefore, their detection in an early stage can help to increase the transformer life and reduce the maintenance costs. In this regard, this paper proposes a signal processing-based methodology to detect early SCTs (i.e., damage of low severity) through the analysis of vibroacoustic signals in steady state under different load conditions, i.e., no load, linear load, nonlinear load, and both linear and nonlinear loads, where the transformer is adapted to emulate different conditions, i.e., healthy (0 SCTs) and with damage of low severity (1 and 2 SCTs). In the signal processing stage, the contrast index is analyzed as a fault indicator, where the Unser and Tamura definitions are tested. For the automatic classification of the obtained indices, an artificial neural network is used. It showed better results than the ones provided by a support vector machine. Results demonstrate that the contrast estimation is suitable as a fault indicator for all the load conditions since 89.78% of accuracy is obtained if the Unser definition is used.

Suggested Citation

  • Jose R. Huerta-Rosales & David Granados-Lieberman & Juan P. Amezquita-Sanchez & Arturo Garcia-Perez & Maximiliano Bueno-Lopez & Martin Valtierra-Rodriguez, 2022. "Contrast Estimation in Vibroacoustic Signals for Diagnosing Early Faults of Short-Circuited Turns in Transformers under Different Load Conditions," Energies, MDPI, vol. 15(22), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8508-:d:972412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Karolina Kudelina & Bilal Asad & Toomas Vaimann & Anton Rassõlkin & Ants Kallaste & Huynh Van Khang, 2021. "Methods of Condition Monitoring and Fault Detection for Electrical Machines," Energies, MDPI, vol. 14(22), pages 1-20, November.
    2. Xiaowen Wu & Ling Li & Nianguang Zhou & Ling Lu & Sheng Hu & Hao Cao & Zhiqiang He, 2018. "Diagnosis of DC Bias in Power Transformers Using Vibration Feature Extraction and a Pattern Recognition Method," Energies, MDPI, vol. 11(7), pages 1-20, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lianguang Liu & Zebang Yu & Zhe Jiang & Jianhong Hao & Wenlin Liu, 2019. "Observation Research on the Effect of UHVDC Grounding Current on Buried Pipelines," Energies, MDPI, vol. 12(7), pages 1-11, April.
    2. Toomas Vaimann & Jose Alfonso Antonino-Daviu & Anton Rassõlkin, 2023. "Novel Approaches to Electrical Machine Fault Diagnosis," Energies, MDPI, vol. 16(15), pages 1-4, July.
    3. Viktor Rjabtšikov & Anton Rassõlkin & Karolina Kudelina & Ants Kallaste & Toomas Vaimann, 2023. "Review of Electric Vehicle Testing Procedures for Digital Twin Development: A Comprehensive Analysis," Energies, MDPI, vol. 16(19), pages 1-17, October.
    4. Sebastian Berhausen & Tomasz Jarek, 2022. "Analysis of Impact of Design Solutions of an Electric Machine with Permanent Magnets for Bearing Voltages with Inverter Power Supply," Energies, MDPI, vol. 15(12), pages 1-19, June.
    5. Mikko Tahkola & Áron Szücs & Jari Halme & Akhtar Zeb & Janne Keränen, 2022. "A Novel Machine Learning-Based Approach for Induction Machine Fault Classifier Development—A Broken Rotor Bar Case Study," Energies, MDPI, vol. 15(9), pages 1-23, May.
    6. Hadi Ashraf Raja & Karolina Kudelina & Bilal Asad & Toomas Vaimann & Ants Kallaste & Anton Rassõlkin & Huynh Van Khang, 2022. "Signal Spectrum-Based Machine Learning Approach for Fault Prediction and Maintenance of Electrical Machines," Energies, MDPI, vol. 15(24), pages 1-16, December.
    7. Krzysztof Kolano & Artur Jan Moradewicz & Bartosz Drzymała & Jakub Gęca, 2022. "Influence of the Placement Accuracy of the Brushless DC Motor Hall Sensor on Inverter Transistor Losses," Energies, MDPI, vol. 15(5), pages 1-13, March.
    8. Hoffstaedt, J.P. & Truijen, D.P.K. & Fahlbeck, J. & Gans, L.H.A. & Qudaih, M. & Laguna, A.J. & De Kooning, J.D.M. & Stockman, K. & Nilsson, H. & Storli, P.-T. & Engel, B. & Marence, M. & Bricker, J.D., 2022. "Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    9. Ahmed Belkhadir & Remus Pusca & Driss Belkhayat & Raphaël Romary & Youssef Zidani, 2023. "Analytical Modeling, Analysis and Diagnosis of External Rotor PMSM with Stator Winding Unbalance Fault," Energies, MDPI, vol. 16(7), pages 1-23, April.
    10. Muhammad Usman Sardar & Toomas Vaimann & Lauri Kütt & Ants Kallaste & Bilal Asad & Siddique Akbar & Karolina Kudelina, 2023. "Inverter-Fed Motor Drive System: A Systematic Analysis of Condition Monitoring and Practical Diagnostic Techniques," Energies, MDPI, vol. 16(15), pages 1-41, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8508-:d:972412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.