IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3192-d183583.html
   My bibliography  Save this article

On-Line Analysis of Oil-Dissolved Gas in Power Transformers Using Fourier Transform Infrared Spectrometry

Author

Listed:
  • Xiaojun Tang

    (State Key Laboratory of Electrical Insulation & Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China)

  • Wenjing Wang

    (State Key Laboratory of Electrical Insulation & Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China)

  • Xuliang Zhang

    (State Key Laboratory of Electrical Insulation & Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China)

  • Erzhen Wang

    (State Key Laboratory of Electrical Insulation & Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China
    State Engineering Laboratory of Low Permeability Oil and Gas Field Exploration and Development, Xi’an 710018, China)

  • Xuanjiannan Li

    (State Key Laboratory of Electrical Insulation & Power Equipment, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

To address the problem of on-line dissolved gas analysis (DGA) of a power transformer, a Fourier transform infrared (FT-IR) spectrometer was used to develop an analysis instrument. Carbon monoxide (CO), carbon dioxide (CO 2 ), methane (CH 4 ), ethane (C 2 H 6 ), ethylene (C 2 H 4 ) and acetylene (C 2 H 2 ) were the analytes for the FT-IR spectrometer while propane (C 3 H 8 ), propylene (C 3 H 6 ), propyne (C 3 H 4 ), n -butane ( n -C 4 H 10 ) and iso-butane (iso-C 4 H 10 ) were the interferents, which might exist in the dissolved gas but are not currently used as analytes for detecting an internal fault. The instrument parameters and analysis approach are first introduced. Specifically, an absorption spectra reading approach by switching two cone-type gas cells into separate light-paths was presented for reducing the effects of gas in the gaps between gas cells and spectrometers, scanning the background spectrum without clearing the sample cell, and increasing the dynamics. Then, the instrument was tested with a standard gas mixture that was extracted from insulation oil in a power transformer. The testing results show that the detection limit of every analyte component is lower than 0.1 μL/L, and the detection limits of all analytes meet the detection requirements of oil-dissolved gas analysis, which means that the FT-IR spectrometer may be an ideal instrument due to its benefits, such as being maintenance-free and having a high stability.

Suggested Citation

  • Xiaojun Tang & Wenjing Wang & Xuliang Zhang & Erzhen Wang & Xuanjiannan Li, 2018. "On-Line Analysis of Oil-Dissolved Gas in Power Transformers Using Fourier Transform Infrared Spectrometry," Energies, MDPI, vol. 11(11), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3192-:d:183583
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3192/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3192/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Faria, Haroldo & Costa, João Gabriel Spir & Olivas, Jose Luis Mejia, 2015. "A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 201-209.
    2. Weigen Chen & Xi Chen & Shangyi Peng & Jian Li, 2012. "Canonical Correlation Between Partial Discharges and Gas Formation in Transformer Oil Paper Insulation," Energies, MDPI, vol. 5(4), pages 1-17, April.
    3. Radu Godina & Eduardo M. G. Rodrigues & João C. O. Matias & João P. S. Catalão, 2015. "Effect of Loads and Other Key Factors on Oil-Transformer Ageing: Sustainability Benefits and Challenges," Energies, MDPI, vol. 8(10), pages 1-40, October.
    4. Fabio Henrique Pereira & Francisco Elânio Bezerra & Shigueru Junior & Josemir Santos & Ivan Chabu & Gilberto Francisco Martha de Souza & Fábio Micerino & Silvio Ikuyo Nabeta, 2018. "Nonlinear Autoregressive Neural Network Models for Prediction of Transformer Oil-Dissolved Gas Concentrations," Energies, MDPI, vol. 11(7), pages 1-12, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Piotrowski & Pawel Rozga & Ryszard Kozak, 2019. "Comparative Analysis of the Results of Diagnostic Measurements with an Internal Inspection of Oil-Filled Power Transformers," Energies, MDPI, vol. 12(11), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bing Zeng & Jiang Guo & Fangqing Zhang & Wenqiang Zhu & Zhihuai Xiao & Sixu Huang & Peng Fan, 2020. "Prediction Model for Dissolved Gas Concentration in Transformer Oil Based on Modified Grey Wolf Optimizer and LSSVM with Grey Relational Analysis and Empirical Mode Decomposition," Energies, MDPI, vol. 13(2), pages 1-20, January.
    2. Fabio Henrique Pereira & Francisco Elânio Bezerra & Shigueru Junior & Josemir Santos & Ivan Chabu & Gilberto Francisco Martha de Souza & Fábio Micerino & Silvio Ikuyo Nabeta, 2018. "Nonlinear Autoregressive Neural Network Models for Prediction of Transformer Oil-Dissolved Gas Concentrations," Energies, MDPI, vol. 11(7), pages 1-12, June.
    3. Miro Antonijević & Stjepan Sučić & Hrvoje Keserica, 2018. "Augmented Reality Applications for Substation Management by Utilizing Standards-Compliant SCADA Communication," Energies, MDPI, vol. 11(3), pages 1-17, March.
    4. Peters, Lennart & Madlener, Reinhard, 2017. "Economic evaluation of maintenance strategies for ground-mounted solar photovoltaic plants," Applied Energy, Elsevier, vol. 199(C), pages 264-280.
    5. Lefeng Cheng & Tao Yu & Guoping Wang & Bo Yang & Lv Zhou, 2018. "Hot Spot Temperature and Grey Target Theory-Based Dynamic Modelling for Reliability Assessment of Transformer Oil-Paper Insulation Systems: A Practical Case Study," Energies, MDPI, vol. 11(1), pages 1-26, January.
    6. Jiefeng Liu & Hanbo Zheng & Yiyi Zhang & Hua Wei & Ruijin Liao, 2017. "Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement," Energies, MDPI, vol. 10(10), pages 1-16, October.
    7. Alper Aydogan & Fatih Atalar & Aysel Ersoy Yilmaz & Pawel Rozga, 2020. "Using the Method of Harmonic Distortion Analysis in Partial Discharge Assessment in Mineral Oil in a Non-Uniform Electric Field," Energies, MDPI, vol. 13(18), pages 1-18, September.
    8. Max Gabriel Steiner & Anderson Diogo Spacek & João Mota Neto & Pedro Rodrigo Silva Moura & Oswaldo Hideo Ando Junior & Cleber Lourenço Izidoro & Luciano Dagostin Bilessimo & Jefferson Diogo Spacek, 2020. "“In Situ” Evaluation of Mechanical Wear of Mobile Contacts of Electricity Voltage Regulator," Energies, MDPI, vol. 13(19), pages 1-17, September.
    9. Chenmeng Xiang & Quan Zhou & Jian Li & Qingdan Huang & Haoyong Song & Zhaotao Zhang, 2016. "Comparison of Dissolved Gases in Mineral and Vegetable Insulating Oils under Typical Electrical and Thermal Faults," Energies, MDPI, vol. 9(5), pages 1-22, April.
    10. Tusongjiang Kari & Wensheng Gao & Ayiguzhali Tuluhong & Yilihamu Yaermaimaiti & Ziwei Zhang, 2018. "Mixed Kernel Function Support Vector Regression with Genetic Algorithm for Forecasting Dissolved Gas Content in Power Transformers," Energies, MDPI, vol. 11(9), pages 1-19, September.
    11. Zhi-Jun Li & Wei-Gen Chen & Jie Shan & Zhi-Yong Yang & Ling-Yan Cao, 2022. "Enhanced Distributed Parallel Firefly Algorithm Based on the Taguchi Method for Transformer Fault Diagnosis," Energies, MDPI, vol. 15(9), pages 1-22, April.
    12. Jun Jiang & Mingxin Zhao & Chaohai Zhang & Min Chen & Haojun Liu & Ricardo Albarracín, 2018. "Partial Discharge Analysis in High-Frequency Transformer Based on High-Frequency Current Transducer," Energies, MDPI, vol. 11(8), pages 1-13, August.
    13. Ruohan Gong & Jiangjun Ruan & Jingzhou Chen & Yu Quan & Jian Wang & Cihan Duan, 2017. "Analysis and Experiment of Hot-Spot Temperature Rise of 110 kV Three-Phase Three-Limb Transformer," Energies, MDPI, vol. 10(8), pages 1-12, July.
    14. Feng Yang & Lin Du & Lijun Yang & Chao Wei & Youyuan Wang & Liman Ran & Peng He, 2018. "A Parameterization Approach for the Dielectric Response Model of Oil Paper Insulation Using FDS Measurements," Energies, MDPI, vol. 11(3), pages 1-17, March.
    15. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.
    16. Álvaro Jaramillo-Duque & Nicolás Muñoz-Galeano & José R. Ortiz-Castrillón & Jesús M. López-Lezama & Ricardo Albarracín-Sánchez, 2018. "Power Loss Minimization for Transformers Connected in Parallel with Taps Based on Power Chargeability Balance," Energies, MDPI, vol. 11(2), pages 1-12, February.
    17. Fang Yuan & Jiang Guo & Zhihuai Xiao & Bing Zeng & Wenqiang Zhu & Sixu Huang, 2020. "An Interval Forecasting Model Based on Phase Space Reconstruction and Weighted Least Squares Support Vector Machine for Time Series of Dissolved Gas Content in Transformer Oil," Energies, MDPI, vol. 13(7), pages 1-28, April.
    18. Sergio Bustamante & Mario Manana & Alberto Arroyo & Raquel Martinez & Alberto Laso, 2020. "A Methodology for the Calculation of Typical Gas Concentration Values and Sampling Intervals in the Power Transformers of a Distribution System Operator," Energies, MDPI, vol. 13(22), pages 1-18, November.
    19. Grzegorz Dombek & Zbigniew Nadolny & Piotr Przybylek & Radoslaw Lopatkiewicz & Agnieszka Marcinkowska & Lukasz Druzynski & Tomasz Boczar & Andrzej Tomczewski, 2020. "Effect of Moisture on the Thermal Conductivity of Cellulose and Aramid Paper Impregnated with Various Dielectric Liquids," Energies, MDPI, vol. 13(17), pages 1-17, August.
    20. Godina, Radu & Rodrigues, Eduardo M.G. & Matias, João C.O. & Catalão, João P.S., 2016. "Smart electric vehicle charging scheduler for overloading prevention of an industry client power distribution transformer," Applied Energy, Elsevier, vol. 178(C), pages 29-42.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3192-:d:183583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.