IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1647-d154207.html
   My bibliography  Save this article

A Novel Electromagnetic Coupling Reactor Based Passive Power Filter with Dynamic Tunable Function

Author

Listed:
  • Yifei Wang

    (School of Automation, Wuhan University of Technology, Wuhan 430070, China)

  • Youxin Yuan

    (School of Automation, Wuhan University of Technology, Wuhan 430070, China)

  • Jing Chen

    (School of Automation, Wuhan University of Technology, Wuhan 430070, China)

Abstract

Along with massive applications of power electronic equipment and non-linear loads, harmonic pollutions are becoming more serious than ever. This paper describes a novel electromagnetic coupling reactor based passive power filter with dynamic tuning to quickly eliminate harmony. Firstly, the structure and mathematic model of electromagnetic coupling reactor are presented; secondly, the employed parameters, including electromagnetic coupling reactance converter, primary winding coil, and secondary winding coil are designed based on a stable structure of data; then, the test plat of passive dynamic tunable filter is introduced, as well as the performance test. According to the experimental results, the newly designed electromagnetic coupling reactor can effectively eliminate the harmonies generated by the nonlinear load, greatly reducing the harm caused by harmonics on the grid. By fine-tuning the electromagnetic coupling reactor, the dissonance caused by the change of capacitance and other issues can be effectively solved. Finally, the detailed discussion of this paper is presented, and challenges and new future research are discussed.

Suggested Citation

  • Yifei Wang & Youxin Yuan & Jing Chen, 2018. "A Novel Electromagnetic Coupling Reactor Based Passive Power Filter with Dynamic Tunable Function," Energies, MDPI, vol. 11(7), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1647-:d:154207
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1647/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1647/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marzband, Mousa & Azarinejadian, Fatemeh & Savaghebi, Mehdi & Pouresmaeil, Edris & Guerrero, Josep M. & Lightbody, Gordon, 2018. "Smart transactive energy framework in grid-connected multiple home microgrids under independent and coalition operations," Renewable Energy, Elsevier, vol. 126(C), pages 95-106.
    2. Ahmed M. Othman & Hossam A. Gabbar, 2017. "Enhanced Microgrid Dynamic Performance Using a Modulated Power Filter Based on Enhanced Bacterial Foraging Optimization," Energies, MDPI, vol. 10(6), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifei Wang & Kaiyang Yin & Youxin Yuan & Jing Chen, 2019. "Current-Limiting Soft Starting Method for a High-Voltage and High-Power Motor," Energies, MDPI, vol. 12(16), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doumen, Sjoerd C. & Nguyen, Phuong & Kok, Koen, 2022. "Challenges for large-scale Local Electricity Market implementation reviewed from the stakeholder perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Jaber Valinejad & Mousa Marzband & Michael Elsdon & Ameena Saad Al-Sumaiti & Taghi Barforoushi, 2019. "Dynamic Carbon-Constrained EPEC Model for Strategic Generation Investment Incentives with the Aim of Reducing CO 2 Emissions," Energies, MDPI, vol. 12(24), pages 1-35, December.
    3. Zhao, Qian & Wang, Lu & Stan, Sebastian-Emanuel & Mirza, Nawazish, 2024. "Can artificial intelligence help accelerate the transition to renewable energy?," Energy Economics, Elsevier, vol. 134(C).
    4. Chaabane Bouali & Horst Schulte & Abdelkader Mami, 2019. "A High Performance Optimizing Method for Modeling Photovoltaic Cells and Modules Array Based on Discrete Symbiosis Organism Search," Energies, MDPI, vol. 12(12), pages 1-32, June.
    5. Fan, Cheng & Huang, Gongsheng & Sun, Yongjun, 2018. "A collaborative control optimization of grid-connected net zero energy buildings for performance improvements at building group level," Energy, Elsevier, vol. 164(C), pages 536-549.
    6. Emad M. Ahmed & Mokhtar Aly & Ahmed Elmelegi & Abdullah G. Alharbi & Ziad M. Ali, 2019. "Multifunctional Distributed MPPT Controller for 3P4W Grid-Connected PV Systems in Distribution Network with Unbalanced Loads," Energies, MDPI, vol. 12(24), pages 1-19, December.
    7. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    8. Muhammed Y. Worku & Mohamed A. Hassan & Mohamed A. Abido, 2019. "Real Time Energy Management and Control of Renewable Energy based Microgrid in Grid Connected and Island Modes," Energies, MDPI, vol. 12(2), pages 1-18, January.
    9. Zahoor Ali Khan & Muhammad Adil & Nadeem Javaid & Malik Najmus Saqib & Muhammad Shafiq & Jin-Ghoo Choi, 2020. "Electricity Theft Detection Using Supervised Learning Techniques on Smart Meter Data," Sustainability, MDPI, vol. 12(19), pages 1-25, September.
    10. Jiang, Huaiguang & Zhang, Yingchen & Chen, Yuche & Zhao, Changhong & Tan, Jin, 2018. "Power-traffic coordinated operation for bi-peak shaving and bi-ramp smoothing – A hierarchical data-driven approach," Applied Energy, Elsevier, vol. 229(C), pages 756-766.
    11. Wei-Neng Chang & Chia-Min Chang & Shao-Kang Yen, 2018. "Improvements in Bidirectional Power-Flow Balancing and Electric Power Quality of a Microgrid with Unbalanced Distributed Generators and Loads by Using Shunt Compensators," Energies, MDPI, vol. 11(12), pages 1-14, November.
    12. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    13. Zixiao Xu & Dechang Yang & Weilin Li, 2019. "Microgrid Group Trading Model and Solving Algorithm Based on Blockchain," Energies, MDPI, vol. 12(7), pages 1-19, April.
    14. Antonio Bracale & Guido Carpinelli & Pasquale De Falco, 2019. "Developing and Comparing Different Strategies for Combining Probabilistic Photovoltaic Power Forecasts in an Ensemble Method," Energies, MDPI, vol. 12(6), pages 1-16, March.
    15. Razmjoo, A. & Gakenia Kaigutha, L. & Vaziri Rad, M.A. & Marzband, M. & Davarpanah, A. & Denai, M., 2021. "A Technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO2 emissions in a high potential area," Renewable Energy, Elsevier, vol. 164(C), pages 46-57.
    16. Yu Min Hwang & Issac Sim & Young Ghyu Sun & Heung-Jae Lee & Jin Young Kim, 2018. "Game-Theory Modeling for Social Welfare Maximization in Smart Grids," Energies, MDPI, vol. 11(9), pages 1-23, September.
    17. Arsalan Najafi & Mousa Marzband & Behnam Mohamadi-Ivatloo & Javier Contreras & Mahdi Pourakbari-Kasmaei & Matti Lehtonen & Radu Godina, 2019. "Uncertainty-Based Models for Optimal Management of Energy Hubs Considering Demand Response," Energies, MDPI, vol. 12(8), pages 1-20, April.
    18. Wang, Yifei & Wang, Xiuli & Shao, Chengcheng & Gong, Naiwei, 2020. "Distributed energy trading for an integrated energy system and electric vehicle charging stations: A Nash bargaining game approach," Renewable Energy, Elsevier, vol. 155(C), pages 513-530.
    19. Khaloie, Hooman & Abdollahi, Amir & Shafie-khah, Miadreza & Anvari-Moghaddam, Amjad & Nojavan, Sayyad & Siano, Pierluigi & Catalão, João P.S., 2020. "Coordinated wind-thermal-energy storage offering strategy in energy and spinning reserve markets using a multi-stage model," Applied Energy, Elsevier, vol. 259(C).
    20. Schwidtal, J.M. & Piccini, P. & Troncia, M. & Chitchyan, R. & Montakhabi, M. & Francis, C. & Gorbatcheva, A. & Capper, T. & Mustafa, M.A. & Andoni, M. & Robu, V. & Bahloul, M. & Scott, I.J. & Mbavarir, 2023. "Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1647-:d:154207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.