Fundamental Material Properties of the 2LiBH 4 -MgH 2 Reactive Hydride Composite for Hydrogen Storage: (I) Thermodynamic and Heat Transfer Properties
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Louis Schlapbach & Andreas Züttel, 2001. "Hydrogen-storage materials for mobile applications," Nature, Nature, vol. 414(6861), pages 353-358, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Vamsi Krishna Kukkapalli & Sunwoo Kim & Seth A. Thomas, 2023. "Thermal Management Techniques in Metal Hydrides for Hydrogen Storage Applications: A Review," Energies, MDPI, vol. 16(8), pages 1-27, April.
- Artem Chesalkin & Petr Kacor & Petr Moldrik, 2021. "Heat Transfer Optimization of NEXA Ballard Low-Temperature PEMFC," Energies, MDPI, vol. 14(8), pages 1-17, April.
- Hai Li & Xueteng Gao & Chongzhi Jia & Wan Chen & Bei Liu & Lanying Yang & Changyu Sun & Guangjin Chen, 2018. "Enrichment of Hydrogen from a Hydrogen/Propylene Gas Mixture Using ZIF-8/Water-Glycol Slurry," Energies, MDPI, vol. 11(7), pages 1-13, July.
- Julián Puszkiel & José M. Bellosta von Colbe & Julian Jepsen & Sergey V. Mitrokhin & Elshad Movlaev & Victor Verbetsky & Thomas Klassen, 2020. "Designing an AB 2 -Type Alloy (TiZr-CrMnMo) for the Hybrid Hydrogen Storage Concept," Energies, MDPI, vol. 13(11), pages 1-26, June.
- Julian Jepsen & Chiara Milanese & Julián Puszkiel & Alessandro Girella & Benedetto Schiavo & Gustavo A. Lozano & Giovanni Capurso & José M. Bellosta von Colbe & Amedeo Marini & Stephan Kabelac & Marti, 2018. "Fundamental Material Properties of the 2LiBH 4 -MgH 2 Reactive Hydride Composite for Hydrogen Storage: (II) Kinetic Properties," Energies, MDPI, vol. 11(5), pages 1-15, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chung, Kyong-Hwan, 2010. "High-pressure hydrogen storage on microporous zeolites with varying pore properties," Energy, Elsevier, vol. 35(5), pages 2235-2241.
- Sukanta Mondal & Pratim Kumar Chattaraj, 2023. "Aromatic Clusters and Hydrogen Storage," Energies, MDPI, vol. 16(6), pages 1-18, March.
- Melaina, Marc W., 2007. "Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen," Energy Policy, Elsevier, vol. 35(10), pages 4919-4934, October.
- Toyoto Sato & Shin-ichi Orimo, 2021. "The Crystal Structures in Hydrogen Absorption Reactions of REMgNi 4 -Based Alloys (RE: Rare-Earth Metals)," Energies, MDPI, vol. 14(23), pages 1-10, December.
- Radu-George Ciocarlan & Judit Farrando-Perez & Daniel Arenas-Esteban & Maarten Houlleberghs & Luke L. Daemen & Yongqiang Cheng & Anibal J. Ramirez-Cuesta & Eric Breynaert & Johan Martens & Sara Bals &, 2024. "Tuneable mesoporous silica material for hydrogen storage application via nano-confined clathrate hydrate construction," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
- Sharma, Monikankana & N, Rakesh & Dasappa, S., 2016. "Solid oxide fuel cell operating with biomass derived producer gas: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 450-463.
- Ádám Révész & Marcell Gajdics & Miratul Alifah & Viktória Kovács Kis & Erhard Schafler & Lajos Károly Varga & Stanislava Todorova & Tony Spassov & Marcello Baricco, 2022. "Thermal, Microstructural and Electrochemical Hydriding Performance of a Mg 65 Ni 20 Cu 5 Y 10 Metallic Glass Catalyzed by CNT and Processed by High-Pressure Torsion," Energies, MDPI, vol. 15(15), pages 1-15, August.
- Lijuan Yan & Yange Zhang & Jun Liu, 2019. "The Dissociation and Diffusion Features of H2 Molecule on Two Ti Atoms Doped Al(111) Surface," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 16(3), pages 1-4, March.
- Fan Li & Dong Liu & Ke Sun & Songheng Yang & Fangzheng Peng & Kexin Zhang & Guodong Guo & Yuan Si, 2024. "Towards a Future Hydrogen Supply Chain: A Review of Technologies and Challenges," Sustainability, MDPI, vol. 16(5), pages 1-36, February.
- Ádám Révész & Roman Paramonov & Tony Spassov & Marcell Gajdics, 2023. "Microstructure and Hydrogen Storage Performance of Ball-Milled MgH 2 Catalyzed by FeTi," Energies, MDPI, vol. 16(3), pages 1-14, January.
- Tao Fu & Yun-Ting Tsai & Qiang Zhou, 2022. "Numerical Simulation of Magnesium Dust Dispersion and Explosion in 20 L Apparatus via an Euler–Lagrange Method," Energies, MDPI, vol. 15(2), pages 1-12, January.
- Meng-Hsueh Kuo & Neda Neykova & Ivo Stachiv, 2024. "Overview of the Recent Findings in the Perovskite-Type Structures Used for Solar Cells and Hydrogen Storage," Energies, MDPI, vol. 17(18), pages 1-23, September.
- Min Xu & Jinjun Qu & Mai Li, 2022. "National Policies, Recent Research Hotspots, and Application of Sustainable Energy: Case of China, USA, and European Countries," Sustainability, MDPI, vol. 14(16), pages 1-30, August.
- Valero-Pedraza, María José & Martín-Cortés, Alexandra & Navarrete, Alexander & Bermejo, María Dolores & Martín, Ángel, 2015. "Kinetics of hydrogen release from dissolutions of ammonia borane in different ionic liquids," Energy, Elsevier, vol. 91(C), pages 742-750.
- Kai Ma & Erfei Lv & Di Zheng & Weichun Cui & Shuai Dong & Weijie Yang & Zhengyang Gao & Yu Zhou, 2021. "A First-Principles Study on Titanium-Decorated Adsorbent for Hydrogen Storage," Energies, MDPI, vol. 14(20), pages 1-8, October.
- Oner, Oytun & Khalilpour, Kaveh, 2022. "Evaluation of green hydrogen carriers: A multi-criteria decision analysis tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Melaina, Marc W, 2007. "Turn of the century refueling: A review of innovations in early gasoline refueling methods and analogies for hydrogen," Institute of Transportation Studies, Working Paper Series qt8501255w, Institute of Transportation Studies, UC Davis.
- Stephanie J. Boyd & Run Long & Niall J. English, 2022. "Electric Field Effects on Photoelectrochemical Water Splitting: Perspectives and Outlook," Energies, MDPI, vol. 15(4), pages 1-16, February.
- Xinwu Xu & Yang Lu & Junqin Shi & Xiaoyu Hao & Zelin Ma & Ke Yang & Tianyi Zhang & Chan Li & Dina Zhang & Xiaolei Huang & Yibo He, 2023. "Corrosion-resistant cobalt phosphide electrocatalysts for salinity tolerance hydrogen evolution," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
- Shashi Sharma & Shivani Agarwal & Ankur Jain, 2021. "Significance of Hydrogen as Economic and Environmentally Friendly Fuel," Energies, MDPI, vol. 14(21), pages 1-28, November.
More about this item
Keywords
hydrogen storage; LiBH 4 /MgH 2 ; metal hydrides; borohydrides; reactive hydride composites; material properties;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:5:p:1081-:d:143641. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.