IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i3p486-d203239.html
   My bibliography  Save this article

A Cross-Entropy-Based Hybrid Membrane Computing Method for Power System Unit Commitment Problems

Author

Listed:
  • Min Xie

    (School of Electric Power, South China University of Technology, Guangzhou 510640, China)

  • Yuxin Du

    (State Grid Ganzhou Electric Power Supply Company, Ganzhou 341000, China)

  • Peijun Cheng

    (Guangzhou Power Supply Bureau Co., Ltd., Guangzhou 510620, China)

  • Wei Wei

    (School of Electric Power, South China University of Technology, Guangzhou 510640, China)

  • Mingbo Liu

    (School of Electric Power, South China University of Technology, Guangzhou 510640, China)

Abstract

The cross-entropy based hybrid membrane computing method is proposed in this paper to solve the power system unit commitment problem. The traditional unit commitment problem can be usually decomposed into a bi-level optimization problem including unit start-stop scheduling problem and dynamic economic dispatch problem. In this paper, the genetic algorithm-based P system is proposed to schedule the unit start-stop plan, and the biomimetic membrane computing method combined with the cross-entropy is proposed to solve the dynamic economic dispatch problem with a unit start-stop plan given. The simulation results of 10–100 unit systems for 24 h day-ahead dispatching show that the unit commitment problem can be solved effectively by the proposed cross-entropy based hybrid membrane computing method and obtain a good and stable solution.

Suggested Citation

  • Min Xie & Yuxin Du & Peijun Cheng & Wei Wei & Mingbo Liu, 2019. "A Cross-Entropy-Based Hybrid Membrane Computing Method for Power System Unit Commitment Problems," Energies, MDPI, vol. 12(3), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:486-:d:203239
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/3/486/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/3/486/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reuven Rubinstein, 1999. "The Cross-Entropy Method for Combinatorial and Continuous Optimization," Methodology and Computing in Applied Probability, Springer, vol. 1(2), pages 127-190, September.
    2. Dirk P. Kroese & Sergey Porotsky & Reuven Y. Rubinstein, 2006. "The Cross-Entropy Method for Continuous Multi-Extremal Optimization," Methodology and Computing in Applied Probability, Springer, vol. 8(3), pages 383-407, September.
    3. Bai, Yang & Zhong, Haiwang & Xia, Qing & Kang, Chongqing & Xie, Le, 2015. "A decomposition method for network-constrained unit commitment with AC power flow constraints," Energy, Elsevier, vol. 88(C), pages 595-603.
    4. Pereira, Sérgio & Ferreira, Paula & Vaz, A.I.F., 2015. "A simplified optimization model to short-term electricity planning," Energy, Elsevier, vol. 93(P2), pages 2126-2135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco G. Montoya & Raúl Baños & Alfredo Alcayde & Francisco Manzano-Agugliaro, 2019. "Optimization Methods Applied to Power Systems," Energies, MDPI, vol. 12(12), pages 1-8, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    2. Zheng Peng & Donghua Wu & Quan Zheng, 2013. "A Level-Value Estimation Method and Stochastic Implementation for Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 493-523, February.
    3. Zheng Peng & Donghua Wu & Wenxing Zhu, 2016. "The robust constant and its applications in random global search for unconstrained global optimization," Journal of Global Optimization, Springer, vol. 64(3), pages 469-482, March.
    4. Hao Su & Qun Niu & Zhile Yang, 2023. "Optimal Power Flow Using Improved Cross-Entropy Method," Energies, MDPI, vol. 16(14), pages 1-33, July.
    5. Zdravko I. Botev & Dirk P. Kroese, 2008. "An Efficient Algorithm for Rare-event Probability Estimation, Combinatorial Optimization, and Counting," Methodology and Computing in Applied Probability, Springer, vol. 10(4), pages 471-505, December.
    6. Ye, Chengjin & Ding, Yi & Song, Yonghua & Lin, Zhenzhi & Wang, Lei, 2018. "A data driven multi-state model for distribution system flexible planning utilizing hierarchical parallel computing," Applied Energy, Elsevier, vol. 232(C), pages 9-25.
    7. Vrionis, Constantinos & Tsalavoutis, Vasilios & Tolis, Athanasios, 2020. "A Generation Expansion Planning model for integrating high shares of renewable energy: A Meta-Model Assisted Evolutionary Algorithm approach," Applied Energy, Elsevier, vol. 259(C).
    8. Catanzaro, Daniele & Pesenti, Raffaele & Ronco, Roberto, 2023. "Job scheduling under Time-of-Use energy tariffs for sustainable manufacturing: a survey," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1091-1109.
    9. Mattrand, C. & Bourinet, J.-M., 2014. "The cross-entropy method for reliability assessment of cracked structures subjected to random Markovian loads," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 171-182.
    10. R. Y. Rubinstein, 2005. "A Stochastic Minimum Cross-Entropy Method for Combinatorial Optimization and Rare-event Estimation," Methodology and Computing in Applied Probability, Springer, vol. 7(1), pages 5-50, March.
    11. K.-P. Hui & N. Bean & M. Kraetzl & Dirk Kroese, 2005. "The Cross-Entropy Method for Network Reliability Estimation," Annals of Operations Research, Springer, vol. 134(1), pages 101-118, February.
    12. András Lörincz & Zsolt Palotai & Gábor Szirtes, 2012. "Efficient Sparse Coding in Early Sensory Processing: Lessons from Signal Recovery," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-14, March.
    13. Laijun Zhao & Huiyong Li & Yan Sun & Rongbing Huang & Qingmi Hu & Jiajia Wang & Fei Gao, 2017. "Planning Emergency Shelters for Urban Disaster Resilience: An Integrated Location-Allocation Modeling Approach," Sustainability, MDPI, vol. 9(11), pages 1-20, November.
    14. Jian Yang & Huadong Cheng, 2023. "Coupling Coordination between University Scientific & Technological Innovation and Sustainable Economic Development in China," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    15. Fahimnia, Behnam & Sarkis, Joseph & Eshragh, Ali, 2015. "A tradeoff model for green supply chain planning:A leanness-versus-greenness analysis," Omega, Elsevier, vol. 54(C), pages 173-190.
    16. Le Cadre, Hélène & Mou, Yuting & Höschle, Hanspeter, 2022. "Parametrized Inexact-ADMM based coordination games: A normalized Nash equilibrium approach," European Journal of Operational Research, Elsevier, vol. 296(2), pages 696-716.
    17. Joshua C. C. Chan & Liana Jacobi & Dan Zhu, 2022. "An automated prior robustness analysis in Bayesian model comparison," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(3), pages 583-602, April.
    18. Reuven Y. Rubinstein, 2006. "How Many Needles are in a Haystack, or How to Solve #P-Complete Counting Problems Fast," Methodology and Computing in Applied Probability, Springer, vol. 8(1), pages 5-51, March.
    19. Ad Ridder & Bruno Tuffin, 2012. "Probabilistic Bounded Relative Error Property for Learning Rare Event Simulation Techniques," Tinbergen Institute Discussion Papers 12-103/III, Tinbergen Institute.
    20. Chen, Dongwen & Hu, Xiao & Li, Yong & Abbas, Zulkarnain & Wang, Ruzhu & Li, Dehong, 2023. "Nodal conservation principle of potential energy flow analysis for energy flow calculation in energy internet," Energy, Elsevier, vol. 263(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:3:p:486-:d:203239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.