IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p656-d136369.html
   My bibliography  Save this article

Real-Time Framework for Energy Management System of a Smart Microgrid Using Multiagent Systems

Author

Listed:
  • Roberto S. Netto

    (Institute of Electrical Systems and Energy, Federal University of Itajuba, Itajuba MG 37500-903, Brazil)

  • Guilherme R. Ramalho

    (Instituto Federal Sul de Minas Gerais, Poços de Caldas MG 37713-100, Brazil)

  • Benedito D. Bonatto

    (Institute of Electrical Systems and Energy, Federal University of Itajuba, Itajuba MG 37500-903, Brazil)

  • Otavio A. S. Carpinteiro

    (Institute of System Engineering and Information Tecnology, Federal University of Itajuba, Itajuba MG 37500-903, Brazil)

  • A. C. Zambroni de Souza

    (Institute of Electrical Systems and Energy, Federal University of Itajuba, Itajuba MG 37500-903, Brazil)

  • Denisson Q. Oliveira

    (Department of Computer Engineering, Federal University of Maranhão, São Luís MA 65080-805, Brazil)

  • Rodrigo A. S. Braga

    (Institute of System Engineering and Information Tecnology, Federal University of Itajuba, Itajuba MG 37500-903, Brazil)

Abstract

This paper presents a framework to analyze the problem of real-time management of Smart Grids. For this purpose, the energy management is integrated with the power system through a telecommunication system. The use of Multiagent Systems (MAS) leads the proposed algorithm to find the best-integrated solution, taking into consideration the operating scenario and the system characteristics. With this framework it was possible to evaluate the design of the energy management and the impact of the algorithm developed in the MAS. In the same way, the data sent from the power system to be used for energy management have a direct impact on his behavior. The proposed framework is tested with the help of a microgrid, so the results may be replicated.

Suggested Citation

  • Roberto S. Netto & Guilherme R. Ramalho & Benedito D. Bonatto & Otavio A. S. Carpinteiro & A. C. Zambroni de Souza & Denisson Q. Oliveira & Rodrigo A. S. Braga, 2018. "Real-Time Framework for Energy Management System of a Smart Microgrid Using Multiagent Systems," Energies, MDPI, vol. 11(3), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:656-:d:136369
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/656/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/656/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bakar, Nur Najihah Abu & Hassan, Mohammad Yusri & Sulaima, Mohamad Fani & Mohd Nasir, Mohamad Na’im & Khamis, Aziah, 2017. "Microgrid and load shedding scheme during islanded mode: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 161-169.
    2. Moradi, Mohammad H. & Razini, Saleh & Mahdi Hosseinian, S., 2016. "State of art of multiagent systems in power engineering: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 814-824.
    3. Jorge J. Gomez-Sanz & Sandra Garcia-Rodriguez & Nuria Cuartero-Soler & Luis Hernandez-Callejo, 2014. "Reviewing Microgrids from a Multi-Agent Systems Perspective," Energies, MDPI, vol. 7(5), pages 1-28, May.
    4. Morais, Hugo & Kádár, Péter & Faria, Pedro & Vale, Zita A. & Khodr, H.M., 2010. "Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming," Renewable Energy, Elsevier, vol. 35(1), pages 151-156.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giovanni Mercurio Casolino & Mario Russo & Pietro Varilone & Daniele Pescosolido, 2018. "Hardware-in-the-Loop Validation of Energy Management Systems for Microgrids: A Short Overview and a Case Study," Energies, MDPI, vol. 11(11), pages 1-17, November.
    2. Joanna Kott & Marek Kott, 2019. "Generic Ontology of Energy Consumption Households," Energies, MDPI, vol. 12(19), pages 1-19, September.
    3. Fatima Zahra Harmouch & Ahmed F. Ebrahim & Mohammad Mahmoudian Esfahani & Nissrine Krami & Nabil Hmina & Osama A. Mohammed, 2019. "An Optimal Energy Management System for Real-Time Operation of Multiagent-Based Microgrids Using a T-Cell Algorithm," Energies, MDPI, vol. 12(15), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdi, Hamdi & Beigvand, Soheil Derafshi & Scala, Massimo La, 2017. "A review of optimal power flow studies applied to smart grids and microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 742-766.
    2. Zizzo, G. & Beccali, M. & Bonomolo, M. & Di Pietra, B. & Ippolito, M.G. & La Cascia, D. & Leone, G. & Lo Brano, V. & Monteleone, F., 2017. "A feasibility study of some DSM enabling solutions in small islands: The case of Lampedusa," Energy, Elsevier, vol. 140(P1), pages 1030-1046.
    3. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    4. Abbaspour, M. & Satkin, M. & Mohammadi-Ivatloo, B. & Hoseinzadeh Lotfi, F. & Noorollahi, Y., 2013. "Optimal operation scheduling of wind power integrated with compressed air energy storage (CAES)," Renewable Energy, Elsevier, vol. 51(C), pages 53-59.
    5. Sousa, Tiago & Morais, Hugo & Soares, João & Vale, Zita, 2012. "Day-ahead resource scheduling in smart grids considering Vehicle-to-Grid and network constraints," Applied Energy, Elsevier, vol. 96(C), pages 183-193.
    6. Chen, Yen-Haw & Lu, Su-Ying & Chang, Yung-Ruei & Lee, Ta-Tung & Hu, Ming-Che, 2013. "Economic analysis and optimal energy management models for microgrid systems: A case study in Taiwan," Applied Energy, Elsevier, vol. 103(C), pages 145-154.
    7. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    8. Thiaux, Yaël & Dang, Thu Thuy & Schmerber, Louis & Multon, Bernard & Ben Ahmed, Hamid & Bacha, Seddik & Tran, Quoc Tuan, 2019. "Demand-side management strategy in stand-alone hybrid photovoltaic systems with real-time simulation of stochastic electricity consumption behavior," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Saher Javaid & Mineo Kaneko & Yasuo Tan, 2021. "Safe Operation Conditions of Electrical Power System Considering Power Balanceability among Power Generators, Loads, and Storage Devices," Energies, MDPI, vol. 14(15), pages 1-27, July.
    10. Llaria, Alvaro & Curea, Octavian & Jiménez, Jaime & Camblong, Haritza, 2011. "Survey on microgrids: Unplanned islanding and related inverter control techniques," Renewable Energy, Elsevier, vol. 36(8), pages 2052-2061.
    11. Tang, Ruoli & Li, Xin & Lai, Jingang, 2018. "A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization," Applied Energy, Elsevier, vol. 228(C), pages 254-264.
    12. Se-Hyeok Choi & Akhtar Hussain & Hak-Man Kim, 2018. "Adaptive Robust Optimization-Based Optimal Operation of Microgrids Considering Uncertainties in Arrival and Departure Times of Electric Vehicles," Energies, MDPI, vol. 11(10), pages 1-16, October.
    13. Batas Bjelic, Ilija & Ciric, Rade M., 2014. "Optimal distributed generation planning at a local level – A review of Serbian renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 79-86.
    14. Soha, Tamás & Munkácsy, Béla & Harmat, Ádám & Csontos, Csaba & Horváth, Gergely & Tamás, László & Csüllög, Gábor & Daróczi, Henriett & Sáfián, Fanni & Szabó, Mária, 2017. "GIS-based assessment of the opportunities for small-scale pumped hydro energy storage in middle-mountain areas focusing on artificial landscape features," Energy, Elsevier, vol. 141(C), pages 1363-1373.
    15. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    16. Soares, J. & Silva, M. & Sousa, T. & Vale, Z. & Morais, H., 2012. "Distributed energy resource short-term scheduling using Signaled Particle Swarm Optimization," Energy, Elsevier, vol. 42(1), pages 466-476.
    17. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    18. Yu, Nan & Kang, Jin-Su & Chang, Chung-Chuan & Lee, Tai-Yong & Lee, Dong-Yup, 2016. "Robust economic optimization and environmental policy analysis for microgrid planning: An application to Taichung Industrial Park, Taiwan," Energy, Elsevier, vol. 113(C), pages 671-682.
    19. Danilo Santoro & Nicola Delmonte & Marco Simonazzi & Andrea Toscani & Nicholas Rocchi & Giovanna Sozzi & Paolo Cova & Roberto Menozzi, 2023. "Local Power Distribution—A Review of Nanogrid Architectures, Control Strategies, and Converters," Sustainability, MDPI, vol. 15(3), pages 1-29, February.
    20. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:656-:d:136369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.