IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p633-d136042.html
   My bibliography  Save this article

A Novel Statistical Method to Temporally Downscale Wind Speed Weibull Distribution Using Scaling Property

Author

Listed:
  • Ju-Young Shin

    (Department of Civil and Environmental Engineering, Yonsei University, 03722 Seoul, Korea)

  • Changsam Jeong

    (Department of Civil and Environmental Engineering, Induk University, 01877 Seoul, Korea)

  • Jun-Haeng Heo

    (Department of Civil and Environmental Engineering, Yonsei University, 03722 Seoul, Korea)

Abstract

To improve our capacity to use available wind speed data, it is necessary to develop a new statistical temporal downscaling method that uses one or a few input variables of any temporal scale for mean wind speed data to obtain wind statistics at finer temporal resolution. In the present study, a novel statistical temporal downscaling method for wind speed statistics and probability distribution is proposed. The proposed method uses the temporal structure to downscale the wind speed statistics to a fine temporal scale without the use of additional variables. The Weibull distribution of the hourly and 10-min mean wind speed data is obtained by the downscaled wind speed statistics. The proposed method provides the downscaled Weibull distribution of fine temporal wind speed data using coarse temporal wind statistics. Particularly, the use of sub-daily mean wind speed data in the downscaling of the wind speed Weibull distribution leads to good estimation precision. The Weibull distribution downscaled by the proposed method successfully reproduces the wind power density based on the wind potential energy estimation.

Suggested Citation

  • Ju-Young Shin & Changsam Jeong & Jun-Haeng Heo, 2018. "A Novel Statistical Method to Temporally Downscale Wind Speed Weibull Distribution Using Scaling Property," Energies, MDPI, vol. 11(3), pages 1-27, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:633-:d:136042
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/633/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/633/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Celik, Ali Naci, 2004. "A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey," Renewable Energy, Elsevier, vol. 29(4), pages 593-604.
    2. Saeid Soltani & Razi Helfi & Parisa Almasi & Reza Modarres, 2017. "Regionalization of Rainfall Intensity-Duration-Frequency using a Simple Scaling Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4253-4273, October.
    3. Holtslag, M.C. & Bierbooms, W.A.A.M. & van Bussel, G.J.W., 2017. "Extending the diabatic surface layer wind shear profile for offshore wind energy," Renewable Energy, Elsevier, vol. 101(C), pages 96-110.
    4. Fyrippis, Ioannis & Axaopoulos, Petros J. & Panayiotou, Gregoris, 2010. "Wind energy potential assessment in Naxos Island, Greece," Applied Energy, Elsevier, vol. 87(2), pages 577-586, February.
    5. Wais, Piotr, 2017. "A review of Weibull functions in wind sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1099-1107.
    6. Telesca, Luciano & Lovallo, Michele & Kanevski, Mikhail, 2016. "Power spectrum and multifractal detrended fluctuation analysis of high-frequency wind measurements in mountainous regions," Applied Energy, Elsevier, vol. 162(C), pages 1052-1061.
    7. Jiang, Dong & Zhuang, Dafang & Huang, Yaohuan & Wang, Jianhua & Fu, Jingying, 2013. "Evaluating the spatio-temporal variation of China's offshore wind resources based on remotely sensed wind field data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 142-148.
    8. Gualtieri, Giovanni & Secci, Sauro, 2011. "Comparing methods to calculate atmospheric stability-dependent wind speed profiles: A case study on coastal location," Renewable Energy, Elsevier, vol. 36(8), pages 2189-2204.
    9. Gadad, Sanjeev & Deka, Paresh Chandra, 2016. "Offshore wind power resource assessment using Oceansat-2 scatterometer data at a regional scale," Applied Energy, Elsevier, vol. 176(C), pages 157-170.
    10. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    11. Gaitan, Carlos F. & Cannon, Alex J., 2013. "Validation of historical and future statistically downscaled pseudo-observed surface wind speeds in terms of annual climate indices and daily variability," Renewable Energy, Elsevier, vol. 51(C), pages 489-496.
    12. Gualtieri, Giovanni & Secci, Sauro, 2011. "Wind shear coefficients, roughness length and energy yield over coastal locations in Southern Italy," Renewable Energy, Elsevier, vol. 36(3), pages 1081-1094.
    13. Chang, Tian-Pau & Ko, Hong-Hsi & Liu, Feng-Jiao & Chen, Pai-Hsun & Chang, Ying-Pin & Liang, Ying-Hsin & Jang, Horng-Yuan & Lin, Tsung-Chi & Chen, Yi-Hwa, 2012. "Fractal dimension of wind speed time series," Applied Energy, Elsevier, vol. 93(C), pages 742-749.
    14. Gallagher, Sarah & Tiron, Roxana & Whelan, Eoin & Gleeson, Emily & Dias, Frédéric & McGrath, Ray, 2016. "The nearshore wind and wave energy potential of Ireland: A high resolution assessment of availability and accessibility," Renewable Energy, Elsevier, vol. 88(C), pages 494-516.
    15. Shin, Ju-Young & Ouarda, Taha B.M.J. & Lee, Taesam, 2016. "Heterogeneous mixture distributions for modeling wind speed, application to the UAE," Renewable Energy, Elsevier, vol. 91(C), pages 40-52.
    16. Sulaiman, M.Yusof & Akaak, Ahmed Mohammed & Wahab, Mahdi Abd & Zakaria, Azmi & Sulaiman, Z.Abidin & Suradi, Jamil, 2002. "Wind characteristics of Oman," Energy, Elsevier, vol. 27(1), pages 35-46.
    17. Kavasseri, Rajesh G. & Nagarajan, Radhakrishnan, 2005. "A multifractal description of wind speed records," Chaos, Solitons & Fractals, Elsevier, vol. 24(1), pages 165-173.
    18. Chandel, S.S. & Ramasamy, P. & Murthy, K.S.R, 2014. "Wind power potential assessment of 12 locations in western Himalayan region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 530-545.
    19. González-Aparicio, I. & Monforti, F. & Volker, P. & Zucker, A. & Careri, F. & Huld, T. & Badger, J., 2017. "Simulating European wind power generation applying statistical downscaling to reanalysis data," Applied Energy, Elsevier, vol. 199(C), pages 155-168.
    20. Yichao Liu & Daoyi Chen & Qian Yi & Sunwei Li, 2017. "Wind Profiles and Wave Spectra for Potential Wind Farms in South China Sea. Part I: Wind Speed Profile Model," Energies, MDPI, vol. 10(1), pages 1-24, January.
    21. Waewsak, Jompob & Landry, Mathieu & Gagnon, Yves, 2015. "Offshore wind power potential of the Gulf of Thailand," Renewable Energy, Elsevier, vol. 81(C), pages 609-626.
    22. Cannon, D.J. & Brayshaw, D.J. & Methven, J. & Coker, P.J. & Lenaghan, D., 2015. "Using reanalysis data to quantify extreme wind power generation statistics: A 33 year case study in Great Britain," Renewable Energy, Elsevier, vol. 75(C), pages 767-778.
    23. Chang, Tian Pau, 2011. "Performance comparison of six numerical methods in estimating Weibull parameters for wind energy application," Applied Energy, Elsevier, vol. 88(1), pages 272-282, January.
    24. Langousis, Andreas & Veneziano, Daniele & Furcolo, Pierluigi & Lepore, Chiara, 2009. "Multifractal rainfall extremes: Theoretical analysis and practical estimation," Chaos, Solitons & Fractals, Elsevier, vol. 39(3), pages 1182-1194.
    25. Chadee, Xsitaaz T. & Clarke, Ricardo M., 2014. "Large-scale wind energy potential of the Caribbean region using near-surface reanalysis data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 45-58.
    26. Yichao Liu & Sunwei Li & Qian Yi & Daoyi Chen, 2017. "Wind Profiles and Wave Spectra for Potential Wind Farms in South China Sea. Part II: Wave Spectrum Model," Energies, MDPI, vol. 10(1), pages 1-24, January.
    27. Langodan, Sabique & Viswanadhapalli, Yesubabu & Dasari, Hari Prasad & Knio, Omar & Hoteit, Ibrahim, 2016. "A high-resolution assessment of wind and wave energy potentials in the Red Sea," Applied Energy, Elsevier, vol. 181(C), pages 244-255.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Frate, G.F. & Cherubini, P. & Tacconelli, C. & Micangeli, A. & Ferrari, L. & Desideri, U., 2019. "Ramp rate abatement for wind power plants: A techno-economic analysis," Applied Energy, Elsevier, vol. 254(C).
    3. Kam, Olle Michel & Noël, Stéphane & Ramenah, Harry & Kasser, Pierre & Tanougast, Camel, 2021. "Comparative Weibull distribution methods for reliable global solar irradiance assessment in France areas," Renewable Energy, Elsevier, vol. 165(P1), pages 194-210.
    4. Lorenzo Dambrosio & Stefano Pio Manzari, 2024. "Multi-Objective Sensitivity Analysis of a Wind Turbine Equipped with a Pumped Hydro Storage System Using a Reversible Hydraulic Machine," Energies, MDPI, vol. 17(16), pages 1-16, August.
    5. Mekalathur B Hemanth Kumar & Saravanan Balasubramaniyan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen, 2019. "Wind Energy Potential Assessment by Weibull Parameter Estimation Using Multiverse Optimization Method: A Case Study of Tirumala Region in India," Energies, MDPI, vol. 12(11), pages 1-21, June.
    6. Tasir Khan & Ishfaq Ahmad & Yejuan Wang & Muhammad Salam & Amina Shahzadi & Masooma Batool, 2024. "Comparison approach for wind resource assessment to determine the most precise approach," Energy & Environment, , vol. 35(3), pages 1315-1338, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Xinping & Foley, Aoife & Zhang, Zenghai & Wang, Kaimin & O'Driscoll, Kieran, 2020. "An assessment of wind energy potential in the Beibu Gulf considering the energy demands of the Beibu Gulf Economic Rim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Chang, Tian-Pau & Ko, Hong-Hsi & Liu, Feng-Jiao & Chen, Pai-Hsun & Chang, Ying-Pin & Liang, Ying-Hsin & Jang, Horng-Yuan & Lin, Tsung-Chi & Chen, Yi-Hwa, 2012. "Fractal dimension of wind speed time series," Applied Energy, Elsevier, vol. 93(C), pages 742-749.
    3. Chang, Tian-Pau & Liu, Feng-Jiao & Ko, Hong-Hsi & Cheng, Shih-Ping & Sun, Li-Chung & Kuo, Shye-Chorng, 2014. "Comparative analysis on power curve models of wind turbine generator in estimating capacity factor," Energy, Elsevier, vol. 73(C), pages 88-95.
    4. Chen, Xinping & Wang, Kaimin & Zhang, Zenghai & Zeng, Yindong & Zhang, Yao & O'Driscoll, Kieran, 2017. "An assessment of wind and wave climate as potential sources of renewable energy in the nearshore Shenzhen coastal zone of the South China Sea," Energy, Elsevier, vol. 134(C), pages 789-801.
    5. He, J.Y. & Chan, P.W. & Li, Q.S. & Lee, C.W., 2022. "Characterizing coastal wind energy resources based on sodar and microwave radiometer observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    6. Chang, Tian Pau, 2011. "Estimation of wind energy potential using different probability density functions," Applied Energy, Elsevier, vol. 88(5), pages 1848-1856, May.
    7. Liang, Zhengtang & Liang, Jun & Zhang, Li & Wang, Chengfu & Yun, Zhihao & Zhang, Xu, 2015. "Analysis of multi-scale chaotic characteristics of wind power based on Hilbert–Huang transform and Hurst analysis," Applied Energy, Elsevier, vol. 159(C), pages 51-61.
    8. Shin, Ju-Young & Ouarda, Taha B.M.J. & Lee, Taesam, 2016. "Heterogeneous mixture distributions for modeling wind speed, application to the UAE," Renewable Energy, Elsevier, vol. 91(C), pages 40-52.
    9. Olgun Aydin & Bartłomiej Igliński & Krzysztof Krukowski & Marek Siemiński, 2022. "Analyzing Wind Energy Potential Using Efficient Global Optimization: A Case Study for the City Gdańsk in Poland," Energies, MDPI, vol. 15(9), pages 1-22, April.
    10. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    11. Chadee, Xsitaaz T. & Clarke, Ricardo M., 2018. "Wind resources and the levelized cost of wind generated electricity in the Caribbean islands of Trinidad and Tobago," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2526-2540.
    12. Katinas, Vladislovas & Gecevicius, Giedrius & Marciukaitis, Mantas, 2018. "An investigation of wind power density distribution at location with low and high wind speeds using statistical model," Applied Energy, Elsevier, vol. 218(C), pages 442-451.
    13. Liu, Feng-Jiao & Chen, Pai-Hsun & Kuo, Shyi-Shiun & Su, De-Chuan & Chang, Tian-Pau & Yu, Yu-Hua & Lin, Tsung-Chi, 2011. "Wind characterization analysis incorporating genetic algorithm: A case study in Taiwan Strait," Energy, Elsevier, vol. 36(5), pages 2611-2619.
    14. Liu, Feng Jiao & Chang, Tian Pau, 2011. "Validity analysis of maximum entropy distribution based on different moment constraints for wind energy assessment," Energy, Elsevier, vol. 36(3), pages 1820-1826.
    15. Yang, Zihao & Dong, Sheng, 2024. "A novel framework for wind energy assessment at multi-time scale based on non-stationary wind speed models: A case study in China," Renewable Energy, Elsevier, vol. 226(C).
    16. Oluseyi O. Ajayi & Richard O. Fagbenle & James Katende & Julius M. Ndambuki & David O. Omole & Adekunle A. Badejo, 2014. "Wind Energy Study and Energy Cost of Wind Electricity Generation in Nigeria: Past and Recent Results and a Case Study for South West Nigeria," Energies, MDPI, vol. 7(12), pages 1-27, December.
    17. Siyavash Filom & Soheil Radfar & Roozbeh Panahi & Erfan Amini & Mehdi Neshat, 2021. "Exploring Wind Energy Potential as a Driver of Sustainable Development in the Southern Coasts of Iran: The Importance of Wind Speed Statistical Distribution Model," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    18. Mehr Gul & Nengling Tai & Wentao Huang & Muhammad Haroon Nadeem & Moduo Yu, 2019. "Assessment of Wind Power Potential and Economic Analysis at Hyderabad in Pakistan: Powering to Local Communities Using Wind Power," Sustainability, MDPI, vol. 11(5), pages 1-23, March.
    19. Murthy, K.S.R. & Rahi, O.P., 2017. "A comprehensive review of wind resource assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1320-1342.
    20. Celik, Ali N. & Kolhe, Mohan, 2013. "Generalized feed-forward based method for wind energy prediction," Applied Energy, Elsevier, vol. 101(C), pages 582-588.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:633-:d:136042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.