IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v31y2017i13d10.1007_s11269-017-1744-0.html
   My bibliography  Save this article

Regionalization of Rainfall Intensity-Duration-Frequency using a Simple Scaling Model

Author

Listed:
  • Saeid Soltani

    (Isfahan University of Technology)

  • Razi Helfi

    (Isfahan University of Technology)

  • Parisa Almasi

    (Isfahan University of Technology)

  • Reza Modarres

    (Isfahan University of Technology)

Abstract

Design storm is one of the most important tools to design hydraulic structures, hydrologic system and watershed management, mostly extracted by intensity- duration - frequency (IDF) curves for a given specific duration and return period. As for conventional methods to calculate IDF curves, the precipitation should be recorded for different durations so that foregoing curves can be extracted. Such data can be collected from rain gauge stations. In many areas, just daily precipitation data are available by which IDF curves cannot be extracted as per conventional methods. The aim of this research is to make IDF curves for short-term durations according to time scaling model as well as daily rainfalls. The relationships of this method are characterized with three variables including mean (μ 24) and standard deviation (σ 24) of daily rainfall intensity, and scaling exponent (H) by which all IDF curves might be drawn. The method used in present paper entails for less computational steps than conventional methods and by far has low parameters considerably than others in turn increases reliability. Scaling method is used to extract the IDF curves in rain-gauge stations in Khuzestan province located in southwest Iran and results proved the efficiency and robustness of the scaling method. Also ability of scaling concept method was examined in constructing of regional IDF.

Suggested Citation

  • Saeid Soltani & Razi Helfi & Parisa Almasi & Reza Modarres, 2017. "Regionalization of Rainfall Intensity-Duration-Frequency using a Simple Scaling Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(13), pages 4253-4273, October.
  • Handle: RePEc:spr:waterr:v:31:y:2017:i:13:d:10.1007_s11269-017-1744-0
    DOI: 10.1007/s11269-017-1744-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11269-017-1744-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11269-017-1744-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ju-Young Shin & Changsam Jeong & Jun-Haeng Heo, 2018. "A Novel Statistical Method to Temporally Downscale Wind Speed Weibull Distribution Using Scaling Property," Energies, MDPI, vol. 11(3), pages 1-27, March.
    2. Wan Amirul Syahmi Wan Mazlan & Nurul Nadrah Aqilah Tukimat, 2023. "Comparative Analyses on Disaggregation Methods for the Rainfall Projection," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(10), pages 4195-4209, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:31:y:2017:i:13:d:10.1007_s11269-017-1744-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.