IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v51y2013icp489-496.html
   My bibliography  Save this article

Validation of historical and future statistically downscaled pseudo-observed surface wind speeds in terms of annual climate indices and daily variability

Author

Listed:
  • Gaitan, Carlos F.
  • Cannon, Alex J.

Abstract

Surface wind speed variability cannot be resolved by the current generation of Global Climate Models (GCMs) due to their relatively coarse spatial discretization. Downscaling techniques are thus needed to generate finer scale projections of variables like near surface wind speeds. However, classical statistical downscaling experiments are unable to infer which model performs better in a future climate change scenario, as one cannot know the true change in the variable of interest. Additionally, the ability of models to reproduce historical climatologies does not necessarily imply that they will be able to accurately simulate future climate conditions. Moreover, conventional comparisons between downscaling methods have been carried out in terms of standard model performance measures, e.g., correlations and mean squared errors, with infrequent treatment of characteristics such as the ability to reproduce extreme value statistics. To address these limitations, we employ a pseudo-observation downscaling verification approach, which allows one to estimate model performance in the context of future climate projections by replacing historical and future observations with model simulations from a Regional Climate Model (RCM) nested within the domain of the GCM. The new validation methodology compares historical and future RCM pseudo-observations in terms of both downscaled daily variability and annual climate indices characterized by the proposed Wind INDices for the validation of EXtremes (WINDEX).

Suggested Citation

  • Gaitan, Carlos F. & Cannon, Alex J., 2013. "Validation of historical and future statistically downscaled pseudo-observed surface wind speeds in terms of annual climate indices and daily variability," Renewable Energy, Elsevier, vol. 51(C), pages 489-496.
  • Handle: RePEc:eee:renene:v:51:y:2013:i:c:p:489-496
    DOI: 10.1016/j.renene.2012.10.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112006271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.10.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pryor, S.C. & Barthelmie, R.J., 2010. "Climate change impacts on wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 430-437, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Natalie Ruiz Castillo & Carlos F. Gaitán Ospina, 2016. "Projecting Future Change in Growing Degree Days for Winter Wheat," Agriculture, MDPI, vol. 6(3), pages 1-16, September.
    2. Ju-Young Shin & Changsam Jeong & Jun-Haeng Heo, 2018. "A Novel Statistical Method to Temporally Downscale Wind Speed Weibull Distribution Using Scaling Property," Energies, MDPI, vol. 11(3), pages 1-27, March.
    3. Hernández-Escobedo, Q. & Saldaña-Flores, R. & Rodríguez-García, E.R. & Manzano-Agugliaro, F., 2014. "Wind energy resource in Northern Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 890-914.
    4. Keith W. Dixon & John R. Lanzante & Mary Jo Nath & Katharine Hayhoe & Anne Stoner & Aparna Radhakrishnan & V. Balaji & Carlos F. Gaitán, 2016. "Evaluating the stationarity assumption in statistically downscaled climate projections: is past performance an indicator of future results?," Climatic Change, Springer, vol. 135(3), pages 395-408, April.
    5. Carlos F. Gaitán, 2016. "Effects of variance adjustment techniques and time-invariant transfer functions on heat wave duration indices and other metrics derived from downscaled time-series. Study case: Montreal, Canada," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(3), pages 1661-1681, September.
    6. Biresselioglu, Mehmet Efe & Kilinc, Dilara & Onater-Isberk, Esra & Yelkenci, Tezer, 2016. "Estimating the political, economic and environmental factors’ impact on the installed wind capacity development: A system GMM approach," Renewable Energy, Elsevier, vol. 96(PA), pages 636-644.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    2. Jerez, S. & Thais, F. & Tobin, I. & Wild, M. & Colette, A. & Yiou, P. & Vautard, R., 2015. "The CLIMIX model: A tool to create and evaluate spatially-resolved scenarios of photovoltaic and wind power development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1-15.
    3. Huo, Dongxia & Bagadeem, Salim & Elsherazy, Tarek Abbas & Nasnodkar, Siddhesh Prabhu & Kalra, Akash, 2023. "Renewable energy consumption and the rising effect of climate policy uncertainty: Fresh policy analysis from China," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1459-1474.
    4. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    5. Miguel Á. Rodríguez-López & Emilio Cerdá & Pablo del Rio, 2020. "Modeling Wind-Turbine Power Curves: Effects of Environmental Temperature on Wind Energy Generation," Energies, MDPI, vol. 13(18), pages 1-21, September.
    6. Rusu, Eugen, 2024. "The expected wind power dynamics in the Mediterranean Sea considering different climate change scenarios," Renewable Energy, Elsevier, vol. 227(C).
    7. Perera, A.T.D. & Khayatian, F. & Eggimann, S. & Orehounig, K. & Halgamuge, Saman, 2022. "Quantifying the climate and human-system-driven uncertainties in energy planning by using GANs," Applied Energy, Elsevier, vol. 328(C).
    8. Laino, Emilio & Iglesias, Gregorio, 2023. "Extreme climate change hazards and impacts on European coastal cities: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    9. Wang, Bing & Ke, Ruo-Yu & Yuan, Xiao-Chen & Wei, Yi-Ming, 2014. "China׳s regional assessment of renewable energy vulnerability to climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 185-195.
    10. Grubert, E. & Zacarias, M., 2022. "Paradigm shifts for environmental assessment of decarbonizing energy systems: Emerging dominance of embodied impacts and design-oriented decision support needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    11. Aissatou Ndiaye & Mounkaila Saley Moussa & Cheikh Dione & Windmanagda Sawadogo & Jan Bliefernicht & Laouali Dungall & Harald Kunstmann, 2022. "Projected Changes in Solar PV and Wind Energy Potential over West Africa: An Analysis of CORDEX-CORE Simulations," Energies, MDPI, vol. 15(24), pages 1-22, December.
    12. Cinzia Rainone & Danilo De Siero & Luigi Iuspa & Antonio Viviani & Giuseppe Pezzella, 2023. "A Numerical Procedure for Variable-Pitch Law Formulation of Vertical-Axis Wind Turbines," Energies, MDPI, vol. 16(1), pages 1-20, January.
    13. Miao, Haozeyu & Xu, Haiming & Huang, Gang & Yang, Kai, 2023. "Evaluation and future projections of wind energy resources over the Northern Hemisphere in CMIP5 and CMIP6 models," Renewable Energy, Elsevier, vol. 211(C), pages 809-821.
    14. Aslam, Naveed & Yang, Wanping & Saeed, Rabia & Ullah, Fahim, 2024. "Energy transition as a solution for energy security risk: Empirical evidence from BRI countries," Energy, Elsevier, vol. 290(C).
    15. Mirzaei, Ali & Tangang, Fredolin & Juneng, Liew, 2014. "Wave energy potential along the east coast of Peninsular Malaysia," Energy, Elsevier, vol. 68(C), pages 722-734.
    16. Bergen, Matías & Muñoz, Francisco D., 2018. "Quantifying the effects of uncertain climate and environmental policies on investments and carbon emissions: A case study of Chile," Energy Economics, Elsevier, vol. 75(C), pages 261-273.
    17. Jahangir, Mohammad Hossein & Mazinani, Mehran, 2020. "Evaluation of the convertible offshore wave energy capacity of the southern strip of the Caspian Sea," Renewable Energy, Elsevier, vol. 152(C), pages 331-346.
    18. Früh, Wolf-Gerrit, 2013. "Long-term wind resource and uncertainty estimation using wind records from Scotland as example," Renewable Energy, Elsevier, vol. 50(C), pages 1014-1026.
    19. Bonjean Stanton, Muriel C. & Dessai, Suraje & Paavola, Jouni, 2016. "A systematic review of the impacts of climate variability and change on electricity systems in Europe," Energy, Elsevier, vol. 109(C), pages 1148-1159.
    20. Ravestein, P. & van der Schrier, G. & Haarsma, R. & Scheele, R. & van den Broek, M., 2018. "Vulnerability of European intermittent renewable energy supply to climate change and climate variability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 497-508.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:51:y:2013:i:c:p:489-496. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.