IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v35y2024i3p1315-1338.html
   My bibliography  Save this article

Comparison approach for wind resource assessment to determine the most precise approach

Author

Listed:
  • Tasir Khan
  • Ishfaq Ahmad
  • Yejuan Wang
  • Muhammad Salam
  • Amina Shahzadi
  • Masooma Batool

Abstract

The distribution models of wind speed data are essential to assess the potential wind speed energy because they decrease the uncertainty in estimating wind energy output. Therefore, before performing a detailed potential energy analysis, the precise distribution model for data relating to wind speed must be found. This research contains material from numerous goodness-of-fit tests, such as Kolmogorov–Simonov, Anderson–Darling, chi-square, root mean square error, Akaike information criterion, and Bayesian information criterion, which were combined finally to determine the wind speed of the best-fitted distribution. The suggested method collectively makes each criterion. This method was useful in statistically fitting 14 distribution models to wind speed data collected at four sites in Pakistan. The consequences show that this method provides the best source for selecting the most suitable wind speed statistical distribution. Also, the graphical representation is consistent with the analytical consequences. This research presents three estimation methods that can be used to calculate the different distributions used to estimate the wind. In the suggested maximum likelihood method, method of moments, and maximum likelihood estimation, the third-order moment used in the wind energy formula is a crucial function because it contributes to the precise estimate of wind energy. In order to prove the presence of the suggested method of moments, it was compared with well-known estimation methods, such as the method of linear moments and maximum likelihood estimation. In the relative analysis, given several goodness-of-fit tests, the presentation of the considered techniques is estimated based on the actual wind speed evaluated in different periods. The results show that the method of moments provides a more precise estimation than other commonly used methods for estimating wind energy based on the 14 distributions. Therefore, the method of moments can be a better technique for assessing wind energy.

Suggested Citation

  • Tasir Khan & Ishfaq Ahmad & Yejuan Wang & Muhammad Salam & Amina Shahzadi & Masooma Batool, 2024. "Comparison approach for wind resource assessment to determine the most precise approach," Energy & Environment, , vol. 35(3), pages 1315-1338, May.
  • Handle: RePEc:sae:engenv:v:35:y:2024:i:3:p:1315-1338
    DOI: 10.1177/0958305X221135981
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X221135981
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X221135981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ayotamuno, M.J. & Kogbara, R.B. & Ogaji, S.O.T. & Probert, S.D., 2006. "Petroleum contaminated ground-water: Remediation using activated carbon," Applied Energy, Elsevier, vol. 83(11), pages 1258-1264, November.
    2. Ju-Young Shin & Changsam Jeong & Jun-Haeng Heo, 2018. "A Novel Statistical Method to Temporally Downscale Wind Speed Weibull Distribution Using Scaling Property," Energies, MDPI, vol. 11(3), pages 1-27, March.
    3. Mirhosseini, M. & Sharifi, F. & Sedaghat, A., 2011. "Assessing the wind energy potential locations in province of Semnan in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 449-459, January.
    4. Keyhani, A. & Ghasemi-Varnamkhasti, M. & Khanali, M. & Abbaszadeh, R., 2010. "An assessment of wind energy potential as a power generation source in the capital of Iran, Tehran," Energy, Elsevier, vol. 35(1), pages 188-201.
    5. Shoaib, Muhammad & Siddiqui, Imran & Amir, Yousaf Muhammad & Rehman, Saif Ur, 2017. "Evaluation of wind power potential in Baburband (Pakistan) using Weibull distribution function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1343-1351.
    6. Katinas, Vladislovas & Marčiukaitis, Mantas & Gecevičius, Giedrius & Markevičius, Antanas, 2017. "Statistical analysis of wind characteristics based on Weibull methods for estimation of power generation in Lithuania," Renewable Energy, Elsevier, vol. 113(C), pages 190-201.
    7. Schallenberg-Rodríguez, Julieta & García Montesdeoca, Nuria, 2018. "Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands," Energy, Elsevier, vol. 143(C), pages 91-103.
    8. Saleh, H. & Abou El-Azm Aly, A. & Abdel-Hady, S., 2012. "Assessment of different methods used to estimate Weibull distribution parameters for wind speed in Zafarana wind farm, Suez Gulf, Egypt," Energy, Elsevier, vol. 44(1), pages 710-719.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jianzhou & Huang, Xiaojia & Li, Qiwei & Ma, Xuejiao, 2018. "Comparison of seven methods for determining the optimal statistical distribution parameters: A case study of wind energy assessment in the large-scale wind farms of China," Energy, Elsevier, vol. 164(C), pages 432-448.
    2. Mekalathur B Hemanth Kumar & Saravanan Balasubramaniyan & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen, 2019. "Wind Energy Potential Assessment by Weibull Parameter Estimation Using Multiverse Optimization Method: A Case Study of Tirumala Region in India," Energies, MDPI, vol. 12(11), pages 1-21, June.
    3. Amirinia, Gholamreza & Mafi, Somayeh & Mazaheri, Said, 2017. "Offshore wind resource assessment of Persian Gulf using uncertainty analysis and GIS," Renewable Energy, Elsevier, vol. 113(C), pages 915-929.
    4. Chandel, S.S. & Ramasamy, P. & Murthy, K.S.R, 2014. "Wind power potential assessment of 12 locations in western Himalayan region of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 530-545.
    5. Fazelpour, Farivar & Soltani, Nima & Soltani, Sina & Rosen, Marc A., 2015. "Assessment of wind energy potential and economics in the north-western Iranian cities of Tabriz and Ardabil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 87-99.
    6. Mostafaeipour, Ali & Jadidi, Mohsen & Mohammadi, Kasra & Sedaghat, Ahmad, 2014. "An analysis of wind energy potential and economic evaluation in Zahedan, Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 641-650.
    7. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    8. Saeed, Muhammad Abid & Ahmed, Zahoor & Zhang, Weidong, 2021. "Optimal approach for wind resource assessment using Kolmogorov–Smirnov statistic: A case study for large-scale wind farm in Pakistan," Renewable Energy, Elsevier, vol. 168(C), pages 1229-1248.
    9. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    10. Siyavash Filom & Soheil Radfar & Roozbeh Panahi & Erfan Amini & Mehdi Neshat, 2021. "Exploring Wind Energy Potential as a Driver of Sustainable Development in the Southern Coasts of Iran: The Importance of Wind Speed Statistical Distribution Model," Sustainability, MDPI, vol. 13(14), pages 1-24, July.
    11. Minaeian, Ali & Sedaghat, Ahmad & Mostafaeipour, Ali & Akbar Alemrajabi, Ali, 2017. "Exploring economy of small communities and households by investing on harnessing wind energy in the province of Sistan-Baluchestan in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 835-847.
    12. Abul Kalam Azad & Mohammad Golam Rasul & Talal Yusaf, 2014. "Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications," Energies, MDPI, vol. 7(5), pages 1-30, May.
    13. Khahro, Shahnawaz Farhan & Tabbassum, Kavita & Mahmood Soomro, Amir & Liao, Xiaozhong & Alvi, Muhammad Bux & Dong, Lei & Manzoor, M. Farhan, 2014. "Techno-economical evaluation of wind energy potential and analysis of power generation from wind at Gharo, Sindh Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 460-474.
    14. Adekunle Osinowo & Xiaopei Lin & Dongliang Zhao & Zhifeng Wang, 2016. "Wind Energy Potentials and Its Trend in the South China Sea," Energy and Environment Research, Canadian Center of Science and Education, vol. 6(2), pages 1-36, December.
    15. Saeidi, D. & Mirhosseini, M. & Sedaghat, A. & Mostafaeipour, A., 2011. "Feasibility study of wind energy potential in two provinces of Iran: North and South Khorasan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3558-3569.
    16. Mostafaeipour, A. & Sedaghat, A. & Dehghan-Niri, A.A. & Kalantar, V., 2011. "Wind energy feasibility study for city of Shahrbabak in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2545-2556, August.
    17. Rabbani, Rabab & Zeeshan, Muhammad, 2022. "Impact of policy changes on financial viability of wind power plants in Pakistan," Renewable Energy, Elsevier, vol. 193(C), pages 789-806.
    18. Sumair, Muhammad & Aized, Tauseef & Aslam Bhutta, Muhammad Mahmood & Siddiqui, Farrukh Arsalan & Tehreem, Layba & Chaudhry, Abduallah, 2022. "Method of Four Moments Mixture-A new approach for parametric estimation of Weibull Probability Distribution for wind potential estimation applications," Renewable Energy, Elsevier, vol. 191(C), pages 291-304.
    19. Jiang, He & Wang, Jianzhou & Dong, Yao & Lu, Haiyan, 2015. "Comprehensive assessment of wind resources and the low-carbon economy: An empirical study in the Alxa and Xilin Gol Leagues of inner Mongolia, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1304-1319.
    20. Slocum, Alexander H. & Gessel, David J., 2022. "Evolving from a hydrocarbon-based to a sustainable economy: Starting with a case study for Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:35:y:2024:i:3:p:1315-1338. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.