IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i19p7395-d936836.html
   My bibliography  Save this article

Effect of Multistage Circulation Control on Blade Aerodynamic Performance

Author

Listed:
  • Hai Du

    (School of Aeronautics and Astronautics, Xihua University, Chengdu 610039, China
    National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Northwest Polytechnical University, Xi’an 710072, China)

  • Lejie Yang

    (Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu 610039, China)

  • Shuo Chen

    (Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu 610039, China)

  • Wenxiao Zhang

    (School of Aeronautics and Astronautics, Xihua University, Chengdu 610039, China)

  • Shengchun Han

    (Key Laboratory of Fluid and Power Machinery, Ministry of Education, Xihua University, Chengdu 610039, China)

Abstract

To improve the low aerodynamic efficiency and reduce the high energy consumption of a single-stage circulation control wing, a multistage circulation control wing was designed. By combining force measurement and particle image velocimetry (PIV), the aerodynamic and flow-field characteristics of an aerofoil were investigated with respect to the increase in the number of blowing slots, changes in the blowing coefficient, and different blowing ratios for three slots. The force measurement results revealed that the maximum lift-to-drag ratio resulting from simultaneous blowing into the three slots increased by 95.3% compared with that in the absence of circulation control. With an increase in the blowing coefficient, two stages were observed: separation control and supercirculation control. In the separation control stage, the lift and drag coefficients significantly increased and decreased, respectively. In the supercirculation control stage, the lift coefficient gradually increased with the blowing coefficient, whereas the drag coefficient remained unchanged. When the blowing ratio (blowing flow ratio of three slots) in the three slots was 3:1:2, the maximum lift-to-drag ratio of the wing could reach 143.48%. The effects of different slot positions on the aerodynamic control were found to vary. The effects of Slot.1 and Slot.3 in terms of the drag reduction and lift, respectively, were evident, and the influence of Slot.2 on blowing between these two slots played a role in jet relay. The PIV results revealed that multistage blowing circulation increased the curvature of the trailing-edge streamline, thus increasing the equivalent aerofoil camber and improving the wing lift. At a high angle of attack, this circulation demonstrated a flow separation control effect.

Suggested Citation

  • Hai Du & Lejie Yang & Shuo Chen & Wenxiao Zhang & Shengchun Han, 2022. "Effect of Multistage Circulation Control on Blade Aerodynamic Performance," Energies, MDPI, vol. 15(19), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7395-:d:936836
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/19/7395/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/19/7395/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Haipeng & Jiang, Xiao & Chao, Yun & Li, Qian & Li, Mingzhou & Zheng, Wenniu & Chen, Tao, 2019. "Effects of leading edge slat on flow separation and aerodynamic performance of wind turbine," Energy, Elsevier, vol. 182(C), pages 988-998.
    2. He-Yong Xu & Qing-Li Dong & Chen-Liang Qiao & Zheng-Yin Ye, 2018. "Flow Control over the Blunt Trailing Edge of Wind Turbine Airfoils Using Circulation Control," Energies, MDPI, vol. 11(3), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    2. Liu, Qingsong & Miao, Weipao & Li, Chun & Hao, Winxing & Zhu, Haitian & Deng, Yunhe, 2019. "Effects of trailing-edge movable flap on aerodynamic performance and noise characteristics of VAWT," Energy, Elsevier, vol. 189(C).
    3. Bhavsar, Het & Roy, Sukanta & Niyas, Hakeem, 2023. "Aerodynamic performance enhancement of the DU99W405 airfoil for horizontal axis wind turbines using slotted airfoil configuration," Energy, Elsevier, vol. 263(PA).
    4. Xinkai Li & Ke Yang & Hao Hu & Xiaodong Wang & Shun Kang, 2019. "Effect of Tailing-Edge Thickness on Aerodynamic Noise for Wind Turbine Airfoil," Energies, MDPI, vol. 12(2), pages 1-25, January.
    5. Zaki, Abanoub & Abdelrahman, M.A. & Ayad, Samir S. & Abdellatif, O.E., 2022. "Effects of leading edge slat on the aerodynamic performance of low Reynolds number horizontal axis wind turbine," Energy, Elsevier, vol. 239(PD).
    6. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    7. Baocheng Zhou & Shaochun Ma & Weiqing Li & Wenzhi Li & Cong Peng, 2023. "Study on the Influence Mechanism of Energy Consumption of Sugarcane Harvester Extractor by Fluid Simulation and Experiment," Agriculture, MDPI, vol. 13(9), pages 1-20, August.
    8. Azlan, F. & Tan, M.K. & Tan, B.T. & Ismadi, M.-Z., 2023. "Passive flow-field control using dimples for performance enhancement of horizontal axis wind turbine," Energy, Elsevier, vol. 271(C).
    9. Fan, Menghao & Sun, Zhaocheng & Dong, Xiangwei & Li, Zengliang, 2022. "Numerical and experimental investigation of bionic airfoils with leading-edge tubercles at a low-Re in considering stall delay," Renewable Energy, Elsevier, vol. 200(C), pages 154-168.
    10. Mohammadi, Morteza & Maghrebi, Mohammad Javad, 2021. "Improvement of wind turbine aerodynamic performance by vanquishing stall with active multi air jet blowing," Energy, Elsevier, vol. 224(C).
    11. Wang, Longjun & Alam, Md. Mahbub & Rehman, Shafiqur & Zhou, Yu, 2022. "Effects of blowing and suction jets on the aerodynamic performance of wind turbine airfoil," Renewable Energy, Elsevier, vol. 196(C), pages 52-64.
    12. Kun, Wang & Fu, Chen & Jianyang, Yu & Yanping, Song, 2020. "Nested sparse-grid Stochastic Collocation Method for uncertainty quantification of blade stagger angle," Energy, Elsevier, vol. 201(C).
    13. Shunlei Zhang & Xudong Yang & Bifeng Song, 2021. "Numerical Investigation of Performance Enhancement of the S809 Airfoil and Phase VI Wind Turbine Blade Using Co-Flow Jet Technology," Energies, MDPI, vol. 14(21), pages 1-20, October.
    14. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2020. "URANS simulations of a horizontal axis wind turbine under stall condition using Reynolds stress turbulence models," Energy, Elsevier, vol. 213(C).
    15. Qian, Yaoru & Zhang, Yuquan & Sun, Yukun & Wang, Tongguang, 2023. "Numerical investigations of the flow control effect on a thick wind turbine airfoil using deformable trailing edge flaps," Energy, Elsevier, vol. 265(C).
    16. Zhong, Junwei & Li, Jingyin, 2020. "Aerodynamic performance prediction of NREL phase VI blade adopting biplane airfoil," Energy, Elsevier, vol. 206(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:19:p:7395-:d:936836. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.