IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p531-d134107.html
   My bibliography  Save this article

Adaptive Controller of the Major Functions for Controlling a Drive System with Elastic Couplings

Author

Listed:
  • Dung Tran Anh

    (Faculty of Electrical-Electronic Engineering, Vietnam Maritime University, Haiphong 181810, Vietnam)

  • Thang Nguyen Trong

    (Department of Electrical Engineering and Automation, Haiphong Private University, Haiphong 181810, Vietnam)

Abstract

In any drive system, there are always couplings between the motor and the load. Since the hardness of these couplings is finite, they have elastic properties, causing unwanted vibration and negatively affecting system quality. When the couplings are springs with nonlinear characteristics, control is particularly difficult because it is very difficult or impossible to define the parameters of the controlled object. To solve these difficulties, this article proposes an adaptive controller of the major functions for controlling a drive system with nonlinear elastic couplings of unidentified parameters. For the proposed control system, we measure the response speed of the object, use a Luenberger observer to estimate the state variables of the system, and use an adaptive controller to control the system. The experimental results demonstrate that the control object can be controlled without knowing the parameters: the control quality of the system is very good, close to that of a system with a hard coupling, there is no vibration or overshoot, and the transition time is small.

Suggested Citation

  • Dung Tran Anh & Thang Nguyen Trong, 2018. "Adaptive Controller of the Major Functions for Controlling a Drive System with Elastic Couplings," Energies, MDPI, vol. 11(3), pages 1-11, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:531-:d:134107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/531/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/531/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaosong Hu & Fengchun Sun & Yuan Zou, 2010. "Estimation of State of Charge of a Lithium-Ion Battery Pack for Electric Vehicles Using an Adaptive Luenberger Observer," Energies, MDPI, vol. 3(9), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Szabat & Karol Wróbel & Krzysztof Dróżdż & Dariusz Janiszewski & Tomasz Pajchrowski & Adrian Wójcik, 2020. "A Fuzzy Unscented Kalman Filter in the Adaptive Control System of a Drive System with a Flexible Joint," Energies, MDPI, vol. 13(8), pages 1-18, April.
    2. Radosław Nalepa & Karol Najdek & Karol Wróbel & Krzysztof Szabat, 2020. "Application of D-Decomposition Technique to Selection of Controller Parameters for a Two-Mass Drive System," Energies, MDPI, vol. 13(24), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    2. Xuezhe Wei & Xueyuan Wang & Haifeng Dai, 2018. "Practical On-Board Measurement of Lithium Ion Battery Impedance Based on Distributed Voltage and Current Sampling," Energies, MDPI, vol. 11(1), pages 1-15, January.
    3. Qiaohua Fang & Xuezhe Wei & Haifeng Dai, 2019. "A Remaining Discharge Energy Prediction Method for Lithium-Ion Battery Pack Considering SOC and Parameter Inconsistency," Energies, MDPI, vol. 12(6), pages 1-24, March.
    4. Qiao Zhu & Neng Xiong & Ming-Liang Yang & Rui-Sen Huang & Guang-Di Hu, 2017. "State of Charge Estimation for Lithium-Ion Battery Based on Nonlinear Observer: An H ? Method," Energies, MDPI, vol. 10(5), pages 1-19, May.
    5. Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
    6. Tang, Xiaopeng & Liu, Boyang & Lv, Zhou & Gao, Furong, 2017. "Observer based battery SOC estimation: Using multi-gain-switching approach," Applied Energy, Elsevier, vol. 204(C), pages 1275-1283.
    7. Bizhong Xia & Zizhou Lao & Ruifeng Zhang & Yong Tian & Guanghao Chen & Zhen Sun & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2017. "Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-23, December.
    8. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    9. Da Xie & Haoxiang Chu & Yupu Lu & Chenghong Gu & Furong Li & Yu Zhang, 2015. "The Concept of EV’s Intelligent Integrated Station and Its Energy Flow," Energies, MDPI, vol. 8(5), pages 1-28, May.
    10. Tian, Yong & Lai, Rucong & Li, Xiaoyu & Xiang, Lijuan & Tian, Jindong, 2020. "A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter," Applied Energy, Elsevier, vol. 265(C).
    11. Yigeng Huangfu & Jiani Xu & Dongdong Zhao & Yuntian Liu & Fei Gao, 2018. "A Novel Battery State of Charge Estimation Method Based on a Super-Twisting Sliding Mode Observer," Energies, MDPI, vol. 11(5), pages 1-21, May.
    12. Xiao Wang & Jun Xu & Yunfei Zhao, 2018. "Wavelet Based Denoising for the Estimation of the State of Charge for Lithium-Ion Batteries," Energies, MDPI, vol. 11(5), pages 1-13, May.
    13. Hu, Xiaosong & Li, Shengbo Eben & Jia, Zhenzhong & Egardt, Bo, 2014. "Enhanced sample entropy-based health management of Li-ion battery for electrified vehicles," Energy, Elsevier, vol. 64(C), pages 953-960.
    14. Daehyun Kim & Keunhwi Koo & Jae Jin Jeong & Taedong Goh & Sang Woo Kim, 2013. "Second-Order Discrete-Time Sliding Mode Observer for State of Charge Determination Based on a Dynamic Resistance Li-Ion Battery Model," Energies, MDPI, vol. 6(10), pages 1-14, October.
    15. Ming-Hui Chang & Han-Pang Huang & Shu-Wei Chang, 2013. "A New State of Charge Estimation Method for LiFePO 4 Battery Packs Used in Robots," Energies, MDPI, vol. 6(4), pages 1-24, April.
    16. Haitao Zhang & Ming Zhou & Xudong Lan, 2019. "State of Charge Estimation Algorithm for Unmanned Aerial Vehicle Power-Type Lithium Battery Packs Based on the Extended Kalman Filter," Energies, MDPI, vol. 12(20), pages 1-15, October.
    17. Lee, Seongjun & Kim, Jonghoon, 2015. "Discrete wavelet transform-based denoising technique for advanced state-of-charge estimator of a lithium-ion battery in electric vehicles," Energy, Elsevier, vol. 83(C), pages 462-473.
    18. Saw, L.H. & Ye, Y. & Tay, A.A.O., 2014. "Electro-thermal analysis and integration issues of lithium ion battery for electric vehicles," Applied Energy, Elsevier, vol. 131(C), pages 97-107.
    19. Zheng, Linfeng & Zhu, Jianguo & Wang, Guoxiu & He, Tingting & Wei, Yiying, 2016. "Novel methods for estimating lithium-ion battery state of energy and maximum available energy," Applied Energy, Elsevier, vol. 178(C), pages 1-8.
    20. Longxing Wu & Kai Liu & Hui Pang & Jiamin Jin, 2021. "Online SOC Estimation Based on Simplified Electrochemical Model for Lithium-Ion Batteries Considering Current Bias," Energies, MDPI, vol. 14(17), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:531-:d:134107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.