IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p326-d129927.html
   My bibliography  Save this article

A Seasonal Model Using Optimized Multi-Layer Neural Networks to Forecast Power Output of PV Plants

Author

Listed:
  • Yang Hu

    (The School of Control and Computer Engineering, North China Electric Power University, Changping District, Beijing 102206, China)

  • Weiwei Lian

    (The School of Renewable Energy, North China Electric Power University, Changping District, Beijing 102206, China)

  • Yutong Han

    (The School of Renewable Energy, North China Electric Power University, Changping District, Beijing 102206, China)

  • Songyuan Dai

    (The School of Renewable Energy, North China Electric Power University, Changping District, Beijing 102206, China
    The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Changping District, Beijing 102206, China
    The Beijing Key Laboratory of New and Renewable Energy, North China Electric Power University, Changping District, Beijing 102206, China)

  • Honglu Zhu

    (The School of Renewable Energy, North China Electric Power University, Changping District, Beijing 102206, China
    The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Changping District, Beijing 102206, China
    The Beijing Key Laboratory of New and Renewable Energy, North China Electric Power University, Changping District, Beijing 102206, China)

Abstract

With the continuous increase of grid-connected photovoltaic (PV) installed capacity and the urgent demand of synergetic utilization with the other power generation forms, the high-precision prediction of PV power generation is increasingly important for the optimal scheduling and safe operation of the grid. In order to improve the power prediction accuracy, using the response characteristics of PV array under different environmental conditions, a data driven multi-model power prediction method for PV power generation is proposed, based on the seasonal meteorological features. Firstly, through the analysis of PV power characteristics in typical seasons and seasonal distribution of the weather factors, such as solar irradiance and ambient temperature, the influences of different weather factors on PV power prediction are studied. Then, according to the meteorology characteristics of Beijing, different seasons can be divided. The historical data corresponding to different seasons are acquired and then the seasonal PV power forecasting models are established based on optimized multi-layer back propagation neural network (BPNN), realizing the multi-model prediction of PV power. Finally, effectiveness of the seasonal PV power forecasting method is compared and validated. The performance analysis of the neural network forecasting model under typical seasonal conditions shows that the multi-model forecasting method based on seasonal characteristics of PV power generation is better than that of single power forecasting model for the whole year. The results show that the proposed method can effectively improve the power forecasting accuracy of PV power.

Suggested Citation

  • Yang Hu & Weiwei Lian & Yutong Han & Songyuan Dai & Honglu Zhu, 2018. "A Seasonal Model Using Optimized Multi-Layer Neural Networks to Forecast Power Output of PV Plants," Energies, MDPI, vol. 11(2), pages 1-17, February.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:326-:d:129927
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/326/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/326/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
    2. Ayompe, L.M. & Duffy, A. & McCormack, S.J. & Conlon, M., 2010. "Validated real-time energy models for small-scale grid-connected PV-systems," Energy, Elsevier, vol. 35(10), pages 4086-4091.
    3. Massi Pavan, A. & Mellit, A. & De Pieri, D. & Kalogirou, S.A., 2013. "A comparison between BNN and regression polynomial methods for the evaluation of the effect of soiling in large scale photovoltaic plants," Applied Energy, Elsevier, vol. 108(C), pages 392-401.
    4. Fernandez-Jimenez, L. Alfredo & Muñoz-Jimenez, Andrés & Falces, Alberto & Mendoza-Villena, Montserrat & Garcia-Garrido, Eduardo & Lara-Santillan, Pedro M. & Zorzano-Alba, Enrique & Zorzano-Santamaria,, 2012. "Short-term power forecasting system for photovoltaic plants," Renewable Energy, Elsevier, vol. 44(C), pages 311-317.
    5. Alberto Dolara & Francesco Grimaccia & Sonia Leva & Marco Mussetta & Emanuele Ogliari, 2015. "A Physical Hybrid Artificial Neural Network for Short Term Forecasting of PV Plant Power Output," Energies, MDPI, vol. 8(2), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yusen Wang & Wenlong Liao & Yuqing Chang, 2018. "Gated Recurrent Unit Network-Based Short-Term Photovoltaic Forecasting," Energies, MDPI, vol. 11(8), pages 1-14, August.
    2. Sabadus, Andreea & Blaga, Robert & Hategan, Sergiu-Mihai & Calinoiu, Delia & Paulescu, Eugenia & Mares, Oana & Boata, Remus & Stefu, Nicoleta & Paulescu, Marius & Badescu, Viorel, 2024. "A cross-sectional survey of deterministic PV power forecasting: Progress and limitations in current approaches," Renewable Energy, Elsevier, vol. 226(C).
    3. Abdul Rauf Bhatti & Ahmed Bilal Awan & Walied Alharbi & Zainal Salam & Abdullah S. Bin Humayd & Praveen R. P. & Kankar Bhattacharya, 2021. "An Improved Approach to Enhance Training Performance of ANN and the Prediction of PV Power for Any Time-Span without the Presence of Real-Time Weather Data," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    4. Wentao Ma & Lihong Qiu & Fengyuan Sun & Sherif S. M. Ghoneim & Jiandong Duan, 2022. "PV Power Forecasting Based on Relevance Vector Machine with Sparrow Search Algorithm Considering Seasonal Distribution and Weather Type," Energies, MDPI, vol. 15(14), pages 1-24, July.
    5. Mohamed Massaoudi & Ines Chihi & Lilia Sidhom & Mohamed Trabelsi & Shady S. Refaat & Fakhreddine S. Oueslati, 2021. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements," Energies, MDPI, vol. 14(13), pages 1-20, July.
    6. Ali Bagheri & Véronique Feldheim & Christos S. Ioakimidis, 2018. "On the Evolution and Application of the Thermal Network Method for Energy Assessments in Buildings," Energies, MDPI, vol. 11(4), pages 1-20, April.
    7. Shree Krishna Acharya & Young-Min Wi & Jaehee Lee, 2021. "Weather Data Mixing Models for Day-Ahead PV Forecasting in Small-Scale PV Plants," Energies, MDPI, vol. 14(11), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    3. Trigo-González, Mauricio & Batlles, F.J. & Alonso-Montesinos, Joaquín & Ferrada, Pablo & del Sagrado, J. & Martínez-Durbán, M. & Cortés, Marcelo & Portillo, Carlos & Marzo, Aitor, 2019. "Hourly PV production estimation by means of an exportable multiple linear regression model," Renewable Energy, Elsevier, vol. 135(C), pages 303-312.
    4. Agga, Ali & Abbou, Ahmed & Labbadi, Moussa & El Houm, Yassine, 2021. "Short-term self consumption PV plant power production forecasts based on hybrid CNN-LSTM, ConvLSTM models," Renewable Energy, Elsevier, vol. 177(C), pages 101-112.
    5. Gabriel Mendonça de Paiva & Sergio Pires Pimentel & Bernardo Pinheiro Alvarenga & Enes Gonçalves Marra & Marco Mussetta & Sonia Leva, 2020. "Multiple Site Intraday Solar Irradiance Forecasting by Machine Learning Algorithms: MGGP and MLP Neural Networks," Energies, MDPI, vol. 13(11), pages 1-28, June.
    6. Emanuele Ogliari & Alessandro Niccolai & Sonia Leva & Riccardo E. Zich, 2018. "Computational Intelligence Techniques Applied to the Day Ahead PV Output Power Forecast: PHANN, SNO and Mixed," Energies, MDPI, vol. 11(6), pages 1-16, June.
    7. Limouni, Tariq & Yaagoubi, Reda & Bouziane, Khalid & Guissi, Khalid & Baali, El Houssain, 2023. "Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model," Renewable Energy, Elsevier, vol. 205(C), pages 1010-1024.
    8. Alfredo Nespoli & Emanuele Ogliari & Sonia Leva & Alessandro Massi Pavan & Adel Mellit & Vanni Lughi & Alberto Dolara, 2019. "Day-Ahead Photovoltaic Forecasting: A Comparison of the Most Effective Techniques," Energies, MDPI, vol. 12(9), pages 1-15, April.
    9. Sameer Al-Dahidi & Osama Ayadi & Jehad Adeeb & Mohammad Alrbai & Bashar R. Qawasmeh, 2018. "Extreme Learning Machines for Solar Photovoltaic Power Predictions," Energies, MDPI, vol. 11(10), pages 1-18, October.
    10. Athanasios I. Salamanis & Georgia Xanthopoulou & Napoleon Bezas & Christos Timplalexis & Angelina D. Bintoudi & Lampros Zyglakis & Apostolos C. Tsolakis & Dimosthenis Ioannidis & Dionysios Kehagias & , 2020. "Benchmark Comparison of Analytical, Data-Based and Hybrid Models for Multi-Step Short-Term Photovoltaic Power Generation Forecasting," Energies, MDPI, vol. 13(22), pages 1-31, November.
    11. Ümmühan Başaran Filik & Tansu Filik & Ömer Nezih Gerek, 2018. "A Hysteresis Model for Fixed and Sun Tracking Solar PV Power Generation Systems," Energies, MDPI, vol. 11(3), pages 1-15, March.
    12. Li, Pengtao & Zhou, Kaile & Lu, Xinhui & Yang, Shanlin, 2020. "A hybrid deep learning model for short-term PV power forecasting," Applied Energy, Elsevier, vol. 259(C).
    13. Nespoli, Alfredo & Niccolai, Alessandro & Ogliari, Emanuele & Perego, Giovanni & Collino, Elena & Ronzio, Dario, 2022. "Machine Learning techniques for solar irradiation nowcasting: Cloud type classification forecast through satellite data and imagery," Applied Energy, Elsevier, vol. 305(C).
    14. Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
    15. Pedro, Hugo T.C. & Lim, Edwin & Coimbra, Carlos F.M., 2018. "A database infrastructure to implement real-time solar and wind power generation intra-hour forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 513-525.
    16. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    17. Miguel Ángel Rodríguez López & Diego Rodríguez Rodríguez, 2024. "La aplicación de datos masivos en economía de la energía: una revisión," Working Papers 2024-08, FEDEA.
    18. Tuba Tanyıldızı Ağır, 2024. "Prediction of Losses Due to Dust in PV Using Hybrid LSTM-KNN Algorithm: The Case of Saruhanlı," Sustainability, MDPI, vol. 16(9), pages 1-20, April.
    19. Mousavi, Navid & Kothapalli, Ganesh & Habibi, Daryoush & Das, Choton K. & Baniasadi, Ali, 2020. "A novel photovoltaic-pumped hydro storage microgrid applicable to rural areas," Applied Energy, Elsevier, vol. 262(C).
    20. Wang, Zhenyu & Zhang, Yunpeng & Li, Guorong & Zhang, Jinlong & Zhou, Hai & Wu, Ji, 2024. "A novel solar irradiance forecasting method based on multi-physical process of atmosphere optics and LSTM-BP model," Renewable Energy, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:326-:d:129927. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.