IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p603-d135432.html
   My bibliography  Save this article

A Hysteresis Model for Fixed and Sun Tracking Solar PV Power Generation Systems

Author

Listed:
  • Ümmühan Başaran Filik

    (Department of Electrical and Electronics Engineering, Anadolu University, TR-26555 Eskişehir, Turkey)

  • Tansu Filik

    (Department of Electrical and Electronics Engineering, Anadolu University, TR-26555 Eskişehir, Turkey)

  • Ömer Nezih Gerek

    (Department of Electrical and Electronics Engineering, Anadolu University, TR-26555 Eskişehir, Turkey)

Abstract

In this study, a new solar photovoltaic (PV) panel output power model is proposed. The model is constructed as a function of ambient temperature and solar radiations for two types (fixed panel and sun tracking panel) of PV systems. The proposed models are tested and verified on the Renewable Energy Research Home (RERH) system that was installed at the Anadolu University campus in Eskişehir, Turkey. The model is deliberately constructed for the winter season, where cloudliness, rain and snow constitute more challenging conditions for modeling. The developed model outcomes are compared to the outputs of state of the art methods that use global solar radiation and temperature data. A total of eight algebraic models are constructed for the purpose of depicting the solar radiation-to-electric power behavior. It is observed that even the least successful one of these eight variants are performing better than the most accurate method in the literature. It is argued that mathematical incorporation of the proposed novel hysteresis functions to the solar radiation-to-power conversion curves results in a richer class of functions and causes a significant accuracy improvement on the mathematical power generation model, even for the most challenging season of winter.

Suggested Citation

  • Ümmühan Başaran Filik & Tansu Filik & Ömer Nezih Gerek, 2018. "A Hysteresis Model for Fixed and Sun Tracking Solar PV Power Generation Systems," Energies, MDPI, vol. 11(3), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:603-:d:135432
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/603/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/603/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Emanuele Ogliari & Francesco Grimaccia & Sonia Leva & Marco Mussetta, 2013. "Hybrid Predictive Models for Accurate Forecasting in PV Systems," Energies, MDPI, vol. 6(4), pages 1-12, April.
    2. Verma, Deepak & Nema, Savita & Shandilya, A.M. & Dash, Soubhagya K., 2016. "Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1018-1034.
    3. Claudio Monteiro & Tiago Santos & L. Alfredo Fernandez-Jimenez & Ignacio J. Ramirez-Rosado & M. Sonia Terreros-Olarte, 2013. "Short-Term Power Forecasting Model for Photovoltaic Plants Based on Historical Similarity," Energies, MDPI, vol. 6(5), pages 1-20, May.
    4. Fernandez-Jimenez, L. Alfredo & Muñoz-Jimenez, Andrés & Falces, Alberto & Mendoza-Villena, Montserrat & Garcia-Garrido, Eduardo & Lara-Santillan, Pedro M. & Zorzano-Alba, Enrique & Zorzano-Santamaria,, 2012. "Short-term power forecasting system for photovoltaic plants," Renewable Energy, Elsevier, vol. 44(C), pages 311-317.
    5. Honglu Zhu & Xu Li & Qiao Sun & Ling Nie & Jianxi Yao & Gang Zhao, 2015. "A Power Prediction Method for Photovoltaic Power Plant Based on Wavelet Decomposition and Artificial Neural Networks," Energies, MDPI, vol. 9(1), pages 1-15, December.
    6. Alberto Dolara & Francesco Grimaccia & Sonia Leva & Marco Mussetta & Emanuele Ogliari, 2015. "A Physical Hybrid Artificial Neural Network for Short Term Forecasting of PV Plant Power Output," Energies, MDPI, vol. 8(2), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Gomes, 2019. "Assessment of the Impact of Stagnation Temperatures in Receiver Prototypes of C-PVT Collectors," Energies, MDPI, vol. 12(15), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alfredo Nespoli & Emanuele Ogliari & Sonia Leva & Alessandro Massi Pavan & Adel Mellit & Vanni Lughi & Alberto Dolara, 2019. "Day-Ahead Photovoltaic Forecasting: A Comparison of the Most Effective Techniques," Energies, MDPI, vol. 12(9), pages 1-15, April.
    2. Athanasios I. Salamanis & Georgia Xanthopoulou & Napoleon Bezas & Christos Timplalexis & Angelina D. Bintoudi & Lampros Zyglakis & Apostolos C. Tsolakis & Dimosthenis Ioannidis & Dionysios Kehagias & , 2020. "Benchmark Comparison of Analytical, Data-Based and Hybrid Models for Multi-Step Short-Term Photovoltaic Power Generation Forecasting," Energies, MDPI, vol. 13(22), pages 1-31, November.
    3. Honglu Zhu & Weiwei Lian & Lingxing Lu & Songyuan Dai & Yang Hu, 2017. "An Improved Forecasting Method for Photovoltaic Power Based on Adaptive BP Neural Network with a Scrolling Time Window," Energies, MDPI, vol. 10(10), pages 1-18, October.
    4. Honglu Zhu & Xu Li & Qiao Sun & Ling Nie & Jianxi Yao & Gang Zhao, 2015. "A Power Prediction Method for Photovoltaic Power Plant Based on Wavelet Decomposition and Artificial Neural Networks," Energies, MDPI, vol. 9(1), pages 1-15, December.
    5. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    6. Roberto S. Faranda & Hossein Hafezi & Sonia Leva & Marco Mussetta & Emanuele Ogliari, 2015. "The Optimum PV Plant for a Given Solar DC/AC Converter," Energies, MDPI, vol. 8(6), pages 1-18, May.
    7. Grzegorz Dec & Grzegorz Drałus & Damian Mazur & Bogdan Kwiatkowski, 2021. "Forecasting Models of Daily Energy Generation by PV Panels Using Fuzzy Logic," Energies, MDPI, vol. 14(6), pages 1-16, March.
    8. Limouni, Tariq & Yaagoubi, Reda & Bouziane, Khalid & Guissi, Khalid & Baali, El Houssain, 2023. "Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model," Renewable Energy, Elsevier, vol. 205(C), pages 1010-1024.
    9. Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. Sameer Al-Dahidi & Osama Ayadi & Jehad Adeeb & Mohammad Alrbai & Bashar R. Qawasmeh, 2018. "Extreme Learning Machines for Solar Photovoltaic Power Predictions," Energies, MDPI, vol. 11(10), pages 1-18, October.
    11. Alberto Dolara & Francesco Grimaccia & Sonia Leva & Marco Mussetta & Emanuele Ogliari, 2015. "A Physical Hybrid Artificial Neural Network for Short Term Forecasting of PV Plant Power Output," Energies, MDPI, vol. 8(2), pages 1-16, February.
    12. Orest Lozynskyy & Damian Mazur & Yaroslav Marushchak & Bogdan Kwiatkowski & Andriy Lozynskyy & Tadeusz Kwater & Bohdan Kopchak & Przemysław Hawro & Lidiia Kasha & Robert Pękala & Robert Ziemba & Bogus, 2021. "Formation of Characteristic Polynomials on the Basis of Fractional Powers j of Dynamic Systems and Stability Problems of Such Systems," Energies, MDPI, vol. 14(21), pages 1-35, November.
    13. Ogliari, Emanuele & Dolara, Alberto & Manzolini, Giampaolo & Leva, Sonia, 2017. "Physical and hybrid methods comparison for the day ahead PV output power forecast," Renewable Energy, Elsevier, vol. 113(C), pages 11-21.
    14. Alberto Dolara & Francesco Grimaccia & Giulia Magistrati & Gabriele Marchegiani, 2017. "Optimization Models for Islanded Micro-Grids: A Comparative Analysis between Linear Programming and Mixed Integer Programming," Energies, MDPI, vol. 10(2), pages 1-20, February.
    15. Yang Hu & Weiwei Lian & Yutong Han & Songyuan Dai & Honglu Zhu, 2018. "A Seasonal Model Using Optimized Multi-Layer Neural Networks to Forecast Power Output of PV Plants," Energies, MDPI, vol. 11(2), pages 1-17, February.
    16. Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    17. Leva, S. & Dolara, A. & Grimaccia, F. & Mussetta, M. & Ogliari, E., 2017. "Analysis and validation of 24 hours ahead neural network forecasting of photovoltaic output power," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 88-100.
    18. Das, Utpal Kumar & Tey, Kok Soon & Seyedmahmoudian, Mehdi & Mekhilef, Saad & Idris, Moh Yamani Idna & Van Deventer, Willem & Horan, Bend & Stojcevski, Alex, 2018. "Forecasting of photovoltaic power generation and model optimization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 912-928.
    19. Wei Li & Hui Ren & Ping Chen & Yanyang Wang & Hailong Qi, 2020. "Key Operational Issues on the Integration of Large-Scale Solar Power Generation—A Literature Review," Energies, MDPI, vol. 13(22), pages 1-25, November.
    20. Trigo-González, Mauricio & Batlles, F.J. & Alonso-Montesinos, Joaquín & Ferrada, Pablo & del Sagrado, J. & Martínez-Durbán, M. & Cortés, Marcelo & Portillo, Carlos & Marzo, Aitor, 2019. "Hourly PV production estimation by means of an exportable multiple linear regression model," Renewable Energy, Elsevier, vol. 135(C), pages 303-312.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:603-:d:135432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.