IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i2p303-d129452.html
   My bibliography  Save this article

A Generic Approach to Analyze the Impact of a Future Aircraft Design on the Boarding Process

Author

Listed:
  • Bekir Yildiz

    (Institute of Flight Guidance, Technische Universität Braunschweig, 38118 Braunschweig, Germany)

  • Peter Förster

    (Institute of Flight Guidance, Technische Universität Braunschweig, 38118 Braunschweig, Germany)

  • Thomas Feuerle

    (Institute of Flight Guidance, Technische Universität Braunschweig, 38118 Braunschweig, Germany)

  • Peter Hecker

    (Institute of Flight Guidance, Technische Universität Braunschweig, 38118 Braunschweig, Germany)

  • Stefan Bugow

    (Institute of Production Management, Leibniz Universität Hannover, 30167 Hannover, Germany)

  • Stefan Helber

    (Institute of Production Management, Leibniz Universität Hannover, 30167 Hannover, Germany)

Abstract

The turnaround process constitutes an important part of the air transportation system. Airports often represent bottlenecks in air traffic management (ATM), thus operations related to the preparation of the aircraft for the next flight leg have to be executed smoothly and in a timely manner. The ATM significantly depends on a reliable turnaround process. Future paradigm changes with respect to airplane energy sources, aircraft design or propulsion concepts will also influence the airport layout. As a consequence, operational processes associated with the turnaround will be affected. Airlines aim for efficient and timely turnaround operations that are correlated with higher profits. This case study discusses an approach to investigate a new aircraft design with respect to the implications on the turnaround. The boarding process, as part of the turnaround, serves as an example to evaluate the consequences of new design concepts. This study is part of an interdisciplinary research to investigate future energy, propulsion and designs concepts and their implications on the whole ATM system. Due to these new concepts, several processes of the turnaround will be affected. For example, new energy storage concepts will influence the fueling process on the aircraft itself or might lead to a new infrastructure at the airport. This paper aims to evaluate the applied methodology in the case of a new boarding process, due to a new aircraft design, by means of a generic example. An agent-based boarding simulation is applied to assess passenger behavior during boarding, particularly with regard to cabin layout and seat configuration. The results of the generic boarding simulation are integrated into a simplified, deterministic and generic simulation of the turnaround process. This was done to assess the proposed framework for future investigations which on the one hand address the ATM system holistically and on the other, incorporate additional or adapted processes of the turnaround.

Suggested Citation

  • Bekir Yildiz & Peter Förster & Thomas Feuerle & Peter Hecker & Stefan Bugow & Stefan Helber, 2018. "A Generic Approach to Analyze the Impact of a Future Aircraft Design on the Boarding Process," Energies, MDPI, vol. 11(2), pages 1-12, January.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:303-:d:129452
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/2/303/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/2/303/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, Cheng-Lung & Caves, Robert E, 2000. "Aircraft operational costs and turnaround efficiency at airports," Journal of Air Transport Management, Elsevier, vol. 6(4), pages 201-208.
    2. Majeed Bishara & Peter Horst & Hinesh Madhusoodanan & Martin Brod & Benedikt Daum & Raimund Rolfes, 2018. "A Structural Design Concept for a Multi-Shell Blended Wing Body with Laminar Flow Control," Energies, MDPI, vol. 11(2), pages 1-21, February.
    3. Nils Beck & Tim Landa & Arne Seitz & Loek Boermans & Yaolong Liu & Rolf Radespiel, 2018. "Drag Reduction by Laminar Flow Control," Energies, MDPI, vol. 11(1), pages 1-28, January.
    4. Yaolong Liu & Ali Elham & Peter Horst & Martin Hepperle, 2018. "Exploring Vehicle Level Benefits of Revolutionary Technology Progress via Aircraft Design and Optimization," Energies, MDPI, vol. 11(1), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camelia Delcea & Liviu-Adrian Cotfas & Mostafa Salari & R. John Milne, 2018. "Investigating the Random Seat Boarding Method without Seat Assignments with Common Boarding Practices Using an Agent-Based Modeling," Sustainability, MDPI, vol. 10(12), pages 1-28, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Majeed Bishara & Peter Horst & Hinesh Madhusoodanan & Martin Brod & Benedikt Daum & Raimund Rolfes, 2018. "A Structural Design Concept for a Multi-Shell Blended Wing Body with Laminar Flow Control," Energies, MDPI, vol. 11(2), pages 1-21, February.
    2. Matthieu Pettes-Duler & Xavier Roboam & Bruno Sareni, 2022. "Integrated Optimal Design for Hybrid Electric Powertrain of Future Aircrafts," Energies, MDPI, vol. 15(18), pages 1-25, September.
    3. Alexander Barke & Walter Cistjakov & Dominik Steckermeier & Christian Thies & Jan‐Linus Popien & Peter Michalowski & Sofia Pinheiro Melo & Felipe Cerdas & Christoph Herrmann & Ulrike Krewer & Arno Kwa, 2023. "Green batteries for clean skies: Sustainability assessment of lithium‐sulfur all‐solid‐state batteries for electric aircraft," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 795-810, June.
    4. Kim, Myeonghyeon & Bae, Jiheon, 2021. "Modeling the flight departure delay using survival analysis in South Korea," Journal of Air Transport Management, Elsevier, vol. 91(C).
    5. Chaug-Ing Hsu & Ching-Cheng Chao & Nai-Wen Hsu, 2015. "Control strategies for departure process delays at airport passenger terminals," Transportation Planning and Technology, Taylor & Francis Journals, vol. 38(2), pages 214-237, March.
    6. Nils Beck & Tim Landa & Arne Seitz & Loek Boermans & Yaolong Liu & Rolf Radespiel, 2018. "Drag Reduction by Laminar Flow Control," Energies, MDPI, vol. 11(1), pages 1-28, January.
    7. Lange, Anne & Sieling, Julian & Gonzalez Parra, Garoe, 2019. "Convergence in airline operations: The case of ground times," Journal of Air Transport Management, Elsevier, vol. 77(C), pages 39-45.
    8. Thomas Kadyk & Christopher Winnefeld & Richard Hanke-Rauschenbach & Ulrike Krewer, 2018. "Analysis and Design of Fuel Cell Systems for Aviation," Energies, MDPI, vol. 11(2), pages 1-15, February.
    9. Amadeo Ascó, 2016. "An Analysis of Robustness Approaches for the Airport Baggage Sorting Station Assignment Problem," Journal of Optimization, Hindawi, vol. 2016, pages 1-19, September.
    10. Mota, Miguel Mujica & Boosten, Geert & De Bock, Nico & Jimenez, Edgar & de Sousa, Jorge Pinho, 2017. "Simulation-based turnaround evaluation for Lelystad Airport," Journal of Air Transport Management, Elsevier, vol. 64(PA), pages 21-32.
    11. Moussavi, S. Abolfazl & Ghaznavi, Aidin, 2021. "Effect of boundary layer suction on performance of a 2 MW wind turbine," Energy, Elsevier, vol. 232(C).
    12. Xavier Roboam, 2023. "A Review of Powertrain Electrification for Greener Aircraft," Energies, MDPI, vol. 16(19), pages 1-36, September.
    13. Neumann, Simone, 2019. "Is the boarding process on the critical path of the airplane turn-around?," European Journal of Operational Research, Elsevier, vol. 277(1), pages 128-137.
    14. Hutter, Leonie & Jaehn, Florian & Neumann, Simone, 2019. "Influencing factors on airplane boarding times," Omega, Elsevier, vol. 87(C), pages 177-190.
    15. Picchi Scardaoni, Marco & Magnacca, Fabio & Massai, Andrea & Cipolla, Vittorio, 2021. "Aircraft turnaround time estimation in early design phases: Simulation tools development and application to the case of box-wing architecture," Journal of Air Transport Management, Elsevier, vol. 96(C).
    16. Malandri, Caterina & Mantecchini, Luca & Reis, Vasco, 2019. "Aircraft turnaround and industrial actions: How ground handlers' strikes affect airport airside operational efficiency," Journal of Air Transport Management, Elsevier, vol. 78(C), pages 23-32.
    17. Julian Hoelzen & Yaolong Liu & Boris Bensmann & Christopher Winnefeld & Ali Elham & Jens Friedrichs & Richard Hanke-Rauschenbach, 2018. "Conceptual Design of Operation Strategies for Hybrid Electric Aircraft," Energies, MDPI, vol. 11(1), pages 1-26, January.
    18. Melody Dai & Kuan-Hsun Chen, 2014. "Cost evaluation of airline maintenance investigation-triggering methods," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 950-975, October.
    19. Jonas Voigt & Jens Friedrichs, 2021. "Development of a Multi-Segment Parallel Compressor Model for a Boundary Layer Ingesting Fuselage Fan Stage," Energies, MDPI, vol. 14(18), pages 1-16, September.
    20. Regattieri, A. & Giazzi, A. & Gamberi, M. & Gamberini, R., 2015. "An innovative method to optimize the maintenance policies in an aircraft: General framework and case study," Journal of Air Transport Management, Elsevier, vol. 44, pages 8-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:2:p:303-:d:129452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.