IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v277y2019i1p128-137.html
   My bibliography  Save this article

Is the boarding process on the critical path of the airplane turn-around?

Author

Listed:
  • Neumann, Simone

Abstract

One of the effects of increasing cost pressure in airline industry is that airlines strive to realize short turn-around times, i.e., to let the airplanes stay at the gates between flights only as long as necessary. Associated with this is the reduction of the airplane boarding time, which accounts for a large part of the turn-around time. Most of the scientific literature in this area assumes that the boarding process is on the critical path of the turn-around, at least in sufficiently many cases, and hence has a crucial influence on the delay of a flight. The aim of this study is to analyze this assumption empirically. In a field study, we manually collected data of short- and medium-haul flights at a large European airport and analyzed them by performing statistical hypothesis testing. Our results indicate that boarding is on the critical path of the airplane turn-around. Hence, when aiming to reduce the cost of a flight by minimizing delays, optimizing the boarding time and the processes that are related to the boarding procedure is reasonable and thus recommended to the airlines.

Suggested Citation

  • Neumann, Simone, 2019. "Is the boarding process on the critical path of the airplane turn-around?," European Journal of Operational Research, Elsevier, vol. 277(1), pages 128-137.
  • Handle: RePEc:eee:ejores:v:277:y:2019:i:1:p:128-137
    DOI: 10.1016/j.ejor.2019.02.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221719301110
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2019.02.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eitan Bachmat & Daniel Berend & Luba Sapir & Steven Skiena & Natan Stolyarov, 2009. "Analysis of Airplane Boarding Times," Operations Research, INFORMS, vol. 57(2), pages 499-513, April.
    2. Suzuki, Yoshinori, 2000. "The relationship between on-time performance and airline market share: a new approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 36(2), pages 139-154, June.
    3. Van Landeghem, H. & Beuselinck, A., 2002. "Reducing passenger boarding time in airplanes: A simulation based approach," European Journal of Operational Research, Elsevier, vol. 142(2), pages 294-308, October.
    4. Wu, Cheng-Lung & Caves, Robert E, 2000. "Aircraft operational costs and turnaround efficiency at airports," Journal of Air Transport Management, Elsevier, vol. 6(4), pages 201-208.
    5. Nyquist, David C. & McFadden, Kathleen L., 2008. "A study of the airline boarding problem," Journal of Air Transport Management, Elsevier, vol. 14(4), pages 197-204.
    6. Menkes H. L. van den Briel & J. René Villalobos & Gary L. Hogg & Tim Lindemann & Anthony V. Mulé, 2005. "America West Airlines Develops Efficient Boarding Strategies," Interfaces, INFORMS, vol. 35(3), pages 191-201, June.
    7. Zeineddine, Hassan, 2017. "A dynamically optimized aircraft boarding strategy," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 144-151.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ren, Xinhui & Zhou, Xiyu & Xu, Xiaobing, 2020. "A new model of luggage storage time while boarding an airplane: An experimental test," Journal of Air Transport Management, Elsevier, vol. 84(C).
    2. Erland, Sveinung & Bachmat, Eitan & Steiner, Albert, 2024. "Let the fast passengers wait: Boarding an airplane takes shorter time when passengers with the most bin luggage enter first," European Journal of Operational Research, Elsevier, vol. 317(3), pages 748-761.
    3. Fabrin, Bruna H.P. & Ferrari, Denise B. & Arraut, Eduardo M. & Neumann, Simone, 2024. "Towards balancing efficiency and customer satisfaction in airplane boarding: An agent-based approach," Operations Research Perspectives, Elsevier, vol. 12(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hutter, Leonie & Jaehn, Florian & Neumann, Simone, 2019. "Influencing factors on airplane boarding times," Omega, Elsevier, vol. 87(C), pages 177-190.
    2. Salari, Mostafa & Milne, R. John & Delcea, Camelia & Kattan, Lina & Cotfas, Liviu-Adrian, 2020. "Social distancing in airplane seat assignments," Journal of Air Transport Management, Elsevier, vol. 89(C).
    3. Michael Schultz & Jörg Fuchte, 2020. "Evaluation of Aircraft Boarding Scenarios Considering Reduced Transmissions Risks," Sustainability, MDPI, vol. 12(13), pages 1-20, July.
    4. Camelia Delcea & Liviu-Adrian Cotfas & Liliana Crăciun & Anca Gabriela Molanescu, 2018. "Are Seat and Aisle Interferences Affecting the Overall Airplane Boarding Time? An Agent-Based Approach," Sustainability, MDPI, vol. 10(11), pages 1-23, November.
    5. Camelia Delcea & Liviu-Adrian Cotfas & Nora Chiriță & Ionuț Nica, 2018. "A Two-Door Airplane Boarding Approach When Using Apron Buses," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
    6. Camelia Delcea & Liviu-Adrian Cotfas & Mostafa Salari & R. John Milne, 2018. "Investigating the Random Seat Boarding Method without Seat Assignments with Common Boarding Practices Using an Agent-Based Modeling," Sustainability, MDPI, vol. 10(12), pages 1-28, December.
    7. Milne, R. John & Delcea, Camelia & Cotfas, Liviu-Adrian & Salari, Mostafa, 2019. "New methods for two-door airplane boarding using apron buses," Journal of Air Transport Management, Elsevier, vol. 80(C), pages 1-1.
    8. Camelia Delcea & Liviu-Adrian Cotfas & Ramona Paun, 2018. "Agent-Based Evaluation of the Airplane Boarding Strategies’ Efficiency and Sustainability," Sustainability, MDPI, vol. 10(6), pages 1-26, June.
    9. Jaehn, Florian & Neumann, Simone, 2015. "Airplane boarding," European Journal of Operational Research, Elsevier, vol. 244(2), pages 339-359.
    10. Michael Schultz & Michael Schmidt, 2018. "Advancements in Passenger Processes at Airports from Aircraft Perspective," Sustainability, MDPI, vol. 10(11), pages 1-15, October.
    11. Ren, Xinhui & Zhou, Xiyu & Xu, Xiaobing, 2020. "A new model of luggage storage time while boarding an airplane: An experimental test," Journal of Air Transport Management, Elsevier, vol. 84(C).
    12. Erland, Sveinung & Bachmat, Eitan & Steiner, Albert, 2024. "Let the fast passengers wait: Boarding an airplane takes shorter time when passengers with the most bin luggage enter first," European Journal of Operational Research, Elsevier, vol. 317(3), pages 748-761.
    13. Ren, Xinhui & Xu, Xiaobing, 2018. "Experimental analyses of airplane boarding based on interference classification," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 55-63.
    14. Tang, Tie-Qiao & Yang, Shao-Peng & Ou, Hui & Chen, Liang & Huang, Hai-Jun, 2018. "An aircraft boarding model accounting for group behavior," Journal of Air Transport Management, Elsevier, vol. 69(C), pages 182-189.
    15. Picchi Scardaoni, Marco & Magnacca, Fabio & Massai, Andrea & Cipolla, Vittorio, 2021. "Aircraft turnaround time estimation in early design phases: Simulation tools development and application to the case of box-wing architecture," Journal of Air Transport Management, Elsevier, vol. 96(C).
    16. Fabrin, Bruna H.P. & Ferrari, Denise B. & Arraut, Eduardo M. & Neumann, Simone, 2024. "Towards balancing efficiency and customer satisfaction in airplane boarding: An agent-based approach," Operations Research Perspectives, Elsevier, vol. 12(C).
    17. Zeineddine, Hassan, 2021. "Reducing the effect of passengers’ non-compliance with aircraft boarding rules," Journal of Air Transport Management, Elsevier, vol. 92(C).
    18. Wittmann, Jürgen, 2019. "Customer-oriented optimization of the airplane boarding process," Journal of Air Transport Management, Elsevier, vol. 76(C), pages 31-39.
    19. Schultz, Michael & Evler, Jan & Asadi, Ehsan & Preis, Henning & Fricke, Hartmut & Wu, Cheng-Lung, 2020. "Future aircraft turnaround operations considering post-pandemic requirements," Journal of Air Transport Management, Elsevier, vol. 89(C).
    20. R John Milne & Liviu-Adrian Cotfas & Camelia Delcea & Liliana Crăciun & Anca-Gabriela Molănescu, 2020. "Adapting the reverse pyramid airplane boarding method for social distancing in times of COVID-19," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-26, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:277:y:2019:i:1:p:128-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.