IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v42y2012icp23-27.html
   My bibliography  Save this article

Thermoelectric properties of a doped Mg2Sn system

Author

Listed:
  • An, Tae-Ho
  • Choi, Soon-Mok
  • Kim, Il-Ho
  • Kim, Sun-Uk
  • Seo, Won-Seon
  • Kim, Jong-Young
  • Park, Chan

Abstract

Mg2X (X = Si, Sn) thermoelectric materials are promising materials for converting solar-thermal energy to electricity. To investigate the effects of non-stoichiometric compositions and Ag-doping on the thermoelectric properties of Mg2Sn, Mg2Sn thermoelectric materials were synthesized via vacuum melting and the spark plasma sintering (SPS) process. For all compositions with a ratio of Mg:Sn atoms between 67:33 and 71:29, we obtained nearly single-phase Mg2Sn with traces of a second phase. All samples showed the transition of a p- to n-type Seebeck coefficient; however, there were slight differences.

Suggested Citation

  • An, Tae-Ho & Choi, Soon-Mok & Kim, Il-Ho & Kim, Sun-Uk & Seo, Won-Seon & Kim, Jong-Young & Park, Chan, 2012. "Thermoelectric properties of a doped Mg2Sn system," Renewable Energy, Elsevier, vol. 42(C), pages 23-27.
  • Handle: RePEc:eee:renene:v:42:y:2012:i:c:p:23-27
    DOI: 10.1016/j.renene.2011.09.030
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111005489
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.09.030?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, X.L. & Zhao, T.S. & An, L. & Zeng, Y.K. & Yan, X.H., 2015. "A vanadium redox flow battery model incorporating the effect of ion concentrations on ion mobility," Applied Energy, Elsevier, vol. 158(C), pages 157-166.
    2. Qadrdan, Meysam & Chaudry, Modassar & Jenkins, Nick & Baruah, Pranab & Eyre, Nick, 2015. "Impact of transition to a low carbon power system on the GB gas network," Applied Energy, Elsevier, vol. 151(C), pages 1-12.
    3. Cleary, Brendan & Duffy, Aidan & Bach, Bjarne & Vitina, Aisma & O’Connor, Alan & Conlon, Michael, 2016. "Estimating the electricity prices, generation costs and CO2 emissions of large scale wind energy exports from Ireland to Great Britain," Energy Policy, Elsevier, vol. 91(C), pages 38-48.
    4. Fogelman, Charles, 2016. "Measuring gender, development, and land: Data-driven analysis and land reform in Lesotho," World Development Perspectives, Elsevier, vol. 1(C), pages 36-42.
    5. Chaudry, Modassar & Abeysekera, Muditha & Hosseini, Seyed Hamid Reza & Jenkins, Nick & Wu, Jianzhong, 2015. "Uncertainties in decarbonising heat in the UK," Energy Policy, Elsevier, vol. 87(C), pages 623-640.
    6. Ge, Ya & He, Kui & Xiao, Liehui & Yuan, Wuzhi & Huang, Si-Min, 2022. "Geometric optimization for the thermoelectric generator with variable cross-section legs by coupling finite element method and optimization algorithm," Renewable Energy, Elsevier, vol. 183(C), pages 294-303.
    7. Zhu, Jiangong & Knapp, Michael & Darma, Mariyam Susana Dewi & Fang, Qiaohua & Wang, Xueyuan & Dai, Haifeng & Wei, Xuezhe & Ehrenberg, Helmut, 2019. "An improved electro-thermal battery model complemented by current dependent parameters for vehicular low temperature application," Applied Energy, Elsevier, vol. 248(C), pages 149-161.
    8. Khazaee, I. & Rava, A., 2017. "Numerical simulation of the performance of solid oxide fuel cell with different flow channel geometries," Energy, Elsevier, vol. 119(C), pages 235-244.
    9. Barteczko-Hibbert, Christian & Bonis, Ioannis & Binns, Michael & Theodoropoulos, Constantinos & Azapagic, Adisa, 2014. "A multi-period mixed-integer linear optimisation of future electricity supply considering life cycle costs and environmental impacts," Applied Energy, Elsevier, vol. 133(C), pages 317-334.
    10. Liu, Binghe & Yin, Sha & Xu, Jun, 2016. "Integrated computation model of lithium-ion battery subject to nail penetration," Applied Energy, Elsevier, vol. 183(C), pages 278-289.
    11. Yong Choi & Seung-Whee Rhee, 2017. "Evaluation of Energy Consumption in the Mercury Treatment of Phosphor Powder from Spent Fluorescent Lamps Using a Thermal Process," Sustainability, MDPI, vol. 9(11), pages 1-10, November.
    12. Gentillon, Philippe & Southcott, Jake & Chan, Qing N. & Taylor, Robert A., 2018. "Stable flame limits for optimal radiant performance of porous media reactors for thermophotovoltaic applications using packed beds of alumina," Applied Energy, Elsevier, vol. 229(C), pages 736-744.
    13. Jie Yang & Chunyu Du & Ting Wang & Yunzhi Gao & Xinqun Cheng & Pengjian Zuo & Yulin Ma & Jiajun Wang & Geping Yin & Jingying Xie & Bo Lei, 2018. "Rapid Prediction of the Open-Circuit-Voltage of Lithium Ion Batteries Based on an Effective Voltage Relaxation Model," Energies, MDPI, vol. 11(12), pages 1-15, December.
    14. Huang, Song & Guan, Xu & Xiao, Binqing, 2018. "Incentive provision for demand information acquisition in a dual-channel supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 116(C), pages 42-58.
    15. Hackl, Roman & Harvey, Simon, 2013. "Framework methodology for increased energy efficiency and renewable feedstock integration in industrial clusters," Applied Energy, Elsevier, vol. 112(C), pages 1500-1509.
    16. Kotub Uddin & Alessandro Picarelli & Christopher Lyness & Nigel Taylor & James Marco, 2014. "An Acausal Li-Ion Battery Pack Model for Automotive Applications," Energies, MDPI, vol. 7(9), pages 1-26, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:42:y:2012:i:c:p:23-27. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.