IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3425-d188568.html
   My bibliography  Save this article

A Novel Thermal Module with 3-D Configuration Pulsating Heat Pipe for High-Flux Applications

Author

Listed:
  • Chih-Yung Tseng

    (Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, 195, Sec.4, Chung Hsing Rd., Hsinchu 31040, Taiwan
    Department of Mechanical Engineering, National Chiao Tung University, EE474, 1001 University Rd., Hsinchu 30010, Taiwan)

  • Ho-Meng Wu

    (Department of Power Mechanical Engineering, National Tsing Hua University, 101, Sec.2 Kuang Fu Rd., Hsinchu 30013, Taiwan)

  • Shwin-Chung Wong

    (Department of Power Mechanical Engineering, National Tsing Hua University, 101, Sec.2 Kuang Fu Rd., Hsinchu 30013, Taiwan)

  • Kai-Shing Yang

    (Green Energy & Environment Research Laboratories, Industrial Technology Research Institute, 195, Sec.4, Chung Hsing Rd., Hsinchu 31040, Taiwan)

  • Chi-Chuan Wang

    (Department of Mechanical Engineering, National Chiao Tung University, EE474, 1001 University Rd., Hsinchu 30010, Taiwan)

Abstract

A pulsating heat pipe (PHP) contains a wickless design with aligned serpentine tube configuration whose simple structure offers a comparatively easy manufacturing capability. The bends with large curvature are often used for serpentine PHPs. This eventually results in a decline in effective contact surface area between evaporator/condenser and PHP circuitry, thereby impairing the benefit of the wickless design of a PHP. A novel thermal module featuring a 3-D configuration pulsating heat pipe, an evaporator, and a fin-and-tube condenser is proposed to tackle the high-flux application. Methanol is used as the working fluid with a filling ratio of around 60%. Test results indicate the thermal resistance of the proposed module varies from 0.148 K/W to 0.0595 K/W when the supplied power changes from 100 to 1000 W. The proposed thermal module can handle a supplied power up to 1 kW and the corresponding power or heat flux is much higher than any existing literatures.

Suggested Citation

  • Chih-Yung Tseng & Ho-Meng Wu & Shwin-Chung Wong & Kai-Shing Yang & Chi-Chuan Wang, 2018. "A Novel Thermal Module with 3-D Configuration Pulsating Heat Pipe for High-Flux Applications," Energies, MDPI, vol. 11(12), pages 1-12, December.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3425-:d:188568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3425/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3425/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chan, C.W. & Siqueiros, E. & Ling-Chin, J. & Royapoor, M. & Roskilly, A.P., 2015. "Heat utilisation technologies: A critical review of heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 615-627.
    2. Alhuyi Nazari, Mohammad & Ahmadi, Mohammad H. & Ghasempour, Roghayeh & Shafii, Mohammad Behshad & Mahian, Omid & Kalogirou, Soteris & Wongwises, Somchai, 2018. "A review on pulsating heat pipes: From solar to cryogenic applications," Applied Energy, Elsevier, vol. 222(C), pages 475-484.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Cattani & Matteo Malavasi & Fabio Bozzoli & Valerio D’Alessandro & Luca Giammichele, 2023. "Experimental Analysis of an Innovative Electrical Battery Thermal Management System," Energies, MDPI, vol. 16(13), pages 1-17, June.
    2. Chen, Tingsen & Liu, Shuli & Zhang, Shaoliang & Shen, Yongliang & Ji, Wenjie & Wang, Zhihao & Li, Wuyan, 2024. "Experimental study on solar wall by considering parametric sensitivity analysis to enhance heat transfer and energy grade using compound parabolic concentrator and pulsating heat pipe," Renewable Energy, Elsevier, vol. 229(C).
    3. Kai-Shing Yang & Ming-Yean Jiang & Chih-Yung Tseng & Shih-Kuo Wu & Jin-Cherng Shyu, 2020. "Experimental Investigation on the Thermal Performance of Pulsating Heat Pipe Heat Exchangers," Energies, MDPI, vol. 13(1), pages 1-15, January.
    4. Chih-Yung Tseng & Kai-Shing Yang & Chi-Chuan Wang, 2020. "Non-Uniform Three-Dimensional Pulsating Heat Pipe for Anti-Gravity High-Flux Applications," Energies, MDPI, vol. 13(12), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Jafari, Davoud & Wits, Wessel W., 2018. "The utilization of selective laser melting technology on heat transfer devices for thermal energy conversion applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 420-442.
    3. Tang, Heng & Tang, Yong & Wan, Zhenping & Li, Jie & Yuan, Wei & Lu, Longsheng & Li, Yong & Tang, Kairui, 2018. "Review of applications and developments of ultra-thin micro heat pipes for electronic cooling," Applied Energy, Elsevier, vol. 223(C), pages 383-400.
    4. Chen, Juanwen & Li, Zhibin & Huang, Wenbo & Ma, Qingshan & Li, Ang & Wang, Bin & Sun, Hongtao & Jiang, Fangming, 2024. "Super-long gravity heat pipe geothermal space heating system: A practical case in Taiyuan, China," Energy, Elsevier, vol. 299(C).
    5. Zhang, Shiwei & Chen, Jieling & Sun, Yalong & Li, Jie & Zeng, Jian & Yuan, Wei & Tang, Yong, 2019. "Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe," Renewable Energy, Elsevier, vol. 135(C), pages 1133-1143.
    6. Khalilmoghadam, Pooria & Rajabi-Ghahnavieh, Abbas & Shafii, Mohammad Behshad, 2021. "A novel energy storage system for latent heat recovery in solar still using phase change material and pulsating heat pipe," Renewable Energy, Elsevier, vol. 163(C), pages 2115-2127.
    7. Geir Hansen & Erling Næss & Kolbeinn Kristjansson, 2016. "Analysis of a Vertical Flat Heat Pipe Using Potassium Working Fluid and a Wick of Compressed Nickel Foam," Energies, MDPI, vol. 9(3), pages 1-17, March.
    8. Rakshith, Bairi Levi & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Bose, Jefferson Raja & Selvin Raj, J Perinba & Mahian, Omid & Wongwises, Somchai, 2022. "Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    9. Bai, Shengxi & Liu, Chunhua, 2021. "Overview of energy harvesting and emission reduction technologies in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    10. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    11. Alhuyi Nazari, Mohammad & Ahmadi, Mohammad H. & Ghasempour, Roghayeh & Shafii, Mohammad Behshad, 2018. "How to improve the thermal performance of pulsating heat pipes: A review on working fluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 630-638.
    12. Delnava, Haleh & Khosravi, Ali & El Haj Assad, Mamdouh, 2023. "Metafrontier frameworks for estimating solar power efficiency in the United States using stochastic nonparametric envelopment of data (StoNED)," Renewable Energy, Elsevier, vol. 213(C), pages 195-204.
    13. Ng, Edmund Chong Jie & Kueh, Tze Cheng & Wang, Xin & Soh, Ai Kah & Hung, Yew Mun, 2021. "Anomalously enhanced thermal performance of carbon-nanotubes coated micro heat pipes," Energy, Elsevier, vol. 214(C).
    14. Pei, Wansheng & Zhang, Mingyi & Lai, Yuanming & Yan, Zhongrui & Li, Shuangyang, 2019. "Evaluation of the ground heat control capacity of a novel air-L-shaped TPCT-ground (ALTG) cooling system in cold regions," Energy, Elsevier, vol. 179(C), pages 655-668.
    15. Mohammad Hossein Ahmadi & Mohammad Dehghani Madvar & Milad Sadeghzadeh & Mohammad Hossein Rezaei & Manuel Herrera & Shahaboddin Shamshirband, 2019. "Current Status Investigation and Predicting Carbon Dioxide Emission in Latin American Countries by Connectionist Models," Energies, MDPI, vol. 12(10), pages 1-20, May.
    16. Liao, Yuepeng & Gan, Yunhua & Liu, Fengming & Li, Yong, 2024. "Experimental study on the thermal performance of aluminum three-dimensional vapor chamber heat sink with a louvered-fin stacked evaporator wick for data center servers," Energy, Elsevier, vol. 304(C).
    17. Aramesh, M. & Shabani, B., 2020. "On the integration of phase change materials with evacuated tube solar thermal collectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    18. Aref, Latif & Fallahzadeh, Rasoul & Shabanian, Seyed Reza & Hosseinzadeh, Mojtaba, 2021. "A novel dual-diameter closed-loop pulsating heat pipe for a flat plate solar collector," Energy, Elsevier, vol. 230(C).
    19. Shoukat A. Khan & Muataz A. Atieh & Muammer Koç, 2018. "Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-30, November.
    20. Li Ge & Huaqi Li & Xiaoyan Tian & Zeyu Ouyang & Xiaoya Kang & Da Li & Jianqiang Shan & Xinbiao Jiang, 2022. "Improvement and Validation of the System Analysis Model and Code for Heat-Pipe-Cooled Microreactor," Energies, MDPI, vol. 15(7), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3425-:d:188568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.