IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i12p3068-d371040.html
   My bibliography  Save this article

Non-Uniform Three-Dimensional Pulsating Heat Pipe for Anti-Gravity High-Flux Applications

Author

Listed:
  • Chih-Yung Tseng

    (Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, 195, Sec. 4, Chung Hsing Rd., Hsinchu 310, Taiwan
    Department of Mechanical Engineering, Faculty of Engineering, National Chiao Tung University, EE474, 1001 University Rd., Hsinchu 300, Taiwan)

  • Kai-Shing Yang

    (Deparment of Refrigeration, Air Conditioning and Energy Engineering, Faculty of Engineering, National Chin-Yi University of Technology, 51, Sec. 2, Chung-Shan Rd., Taichung 411, Taiwan)

  • Chi-Chuan Wang

    (Department of Mechanical Engineering, Faculty of Engineering, National Chiao Tung University, EE474, 1001 University Rd., Hsinchu 300, Taiwan)

Abstract

This study proposes a novel high-flux pulsating heat pipe that can lift the major constraint of the conventional pulsating heat pipe (PHP) which is unable to function properly upon anti-gravity operations. The proposed PHP introduces additional unbalance force via uneven tube diameter/geometry in the adiabatic sections to tailor the problem in anti-gravity operation. The design contains a three-dimensional configuration circuitry with compact arrangement tubes on the evaporator and condenser. Through this design, the non-uniform three-dimensional pulsating heat pipe (3D-PHP) manipulates the uneven inner diameters of the adiabatic sections to form uneven vapor/liquid distributions in the adiabatic sections to yield a unitary flow pattern that is able to withstand a much higher input power. The present PHP uses methanol as working fluid, with 38% volumetric filling ratio, and has a high-flux of 22.9 W/cm 2 and a low the thermal resistance ratio ( R anti-gravity / R gravity-assisted ) of 1.05 when the input power is 800 W. Both the heat flux and thermal resistance ratio for the proposed design are far better than the existing literature.

Suggested Citation

  • Chih-Yung Tseng & Kai-Shing Yang & Chi-Chuan Wang, 2020. "Non-Uniform Three-Dimensional Pulsating Heat Pipe for Anti-Gravity High-Flux Applications," Energies, MDPI, vol. 13(12), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3068-:d:371040
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/12/3068/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/12/3068/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chih-Yung Tseng & Ho-Meng Wu & Shwin-Chung Wong & Kai-Shing Yang & Chi-Chuan Wang, 2018. "A Novel Thermal Module with 3-D Configuration Pulsating Heat Pipe for High-Flux Applications," Energies, MDPI, vol. 11(12), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    2. Pawel Znaczko & Emilian Szczepanski & Kazimierz Kaminski & Norbert Chamier-Gliszczynski & Jacek Kukulski, 2021. "Experimental Diagnosis of the Heat Pipe Solar Collector Malfunction. A Case Study," Energies, MDPI, vol. 14(11), pages 1-19, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai-Shing Yang & Ming-Yean Jiang & Chih-Yung Tseng & Shih-Kuo Wu & Jin-Cherng Shyu, 2020. "Experimental Investigation on the Thermal Performance of Pulsating Heat Pipe Heat Exchangers," Energies, MDPI, vol. 13(1), pages 1-15, January.
    2. Luca Cattani & Matteo Malavasi & Fabio Bozzoli & Valerio D’Alessandro & Luca Giammichele, 2023. "Experimental Analysis of an Innovative Electrical Battery Thermal Management System," Energies, MDPI, vol. 16(13), pages 1-17, June.
    3. Chen, Tingsen & Liu, Shuli & Zhang, Shaoliang & Shen, Yongliang & Ji, Wenjie & Wang, Zhihao & Li, Wuyan, 2024. "Experimental study on solar wall by considering parametric sensitivity analysis to enhance heat transfer and energy grade using compound parabolic concentrator and pulsating heat pipe," Renewable Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:12:p:3068-:d:371040. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.