IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3282-d185373.html
   My bibliography  Save this article

Energy Efficiency Analysis of Multi-Type Floating Bodies for a Novel Heaving Point Absorber with Application to Low-Power Unmanned Ocean Device

Author

Listed:
  • Dongsheng Cong

    (School of Intelligent Science, National University of Defense Technology, Changsha 410073, China
    School of Mechanical and Electronic Engineering, Shandong Jianzhu University, Jinan 250101, China)

  • Jianzhong Shang

    (School of Intelligent Science, National University of Defense Technology, Changsha 410073, China)

  • Zirong Luo

    (School of Intelligent Science, National University of Defense Technology, Changsha 410073, China)

  • Chongfei Sun

    (School of Intelligent Science, National University of Defense Technology, Changsha 410073, China)

  • Wei Wu

    (School of Intelligent Science, National University of Defense Technology, Changsha 410073, China)

Abstract

Long-term energy supplies hinder the application of the low-power unmanned ocean devices to the deep sea. Ocean wave energy is a renewable resource with amount stores of enormous and high density. The wave energy converter (WEC) could be miniaturized so that it can be integrated into the devices to make up the power module. In this paper, a small novel heaving point absorber of energy supply for low-power unmanned ocean devices is developed based on the counter-rotating self-adaptive mechanism. The floating body as an important part of the heaving point absorber, the geometric parameters is optimized to increase the efficiency of power production. Through constructing the constitutive relation between the geometric parameters, the wave force, the motion displacement, the motion velocity, and the capture width ratio of the floating body, the energy efficiency characteristics of the multi-type floating bodies are calculated, and the optimal shape is selected. On the other hand, in the calculation process of the wave force, the Froude-Krylov method is an effective method to accurately calculate the wave excitation force. Meanwhile, nonlinear static and dynamic Froude-Krylov force effectively overcomes the inaccuracy of the linear models and reduces the time consumed to simulate. Finally, the wave force, heaving velocity, heaving displacement, and capture width ratio of the three floating bodies are compared and analyzed, and the results show that the cylindrical floater that is vertically placed on the wave surface is more suitable for the novel heaving wave energy point absorber.

Suggested Citation

  • Dongsheng Cong & Jianzhong Shang & Zirong Luo & Chongfei Sun & Wei Wu, 2018. "Energy Efficiency Analysis of Multi-Type Floating Bodies for a Novel Heaving Point Absorber with Application to Low-Power Unmanned Ocean Device," Energies, MDPI, vol. 11(12), pages 1-20, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3282-:d:185373
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3282/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3282/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alejandro Mendez & Teresa J. Leo & Miguel A. Herreros, 2014. "Current State of Technology of Fuel Cell Power Systems for Autonomous Underwater Vehicles," Energies, MDPI, vol. 7(7), pages 1-18, July.
    2. Yana Saprykina & Sergey Kuznetsov, 2018. "Analysis of the Variability of Wave Energy Due to Climate Changes on the Example of the Black Sea," Energies, MDPI, vol. 11(8), pages 1-15, August.
    3. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    4. Clément, Alain & McCullen, Pat & Falcão, António & Fiorentino, Antonio & Gardner, Fred & Hammarlund, Karin & Lemonis, George & Lewis, Tony & Nielsen, Kim & Petroncini, Simona & Pontes, M. -Teresa & Sc, 2002. "Wave energy in Europe: current status and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(5), pages 405-431, October.
    5. Chongfei Sun & Zirong Luo & Jianzhong Shang & Zhongyue Lu & Yiming Zhu & Guoheng Wu, 2018. "Design and Numerical Analysis of a Novel Counter-Rotating Self-Adaptable Wave Energy Converter Based on CFD Technology," Energies, MDPI, vol. 11(4), pages 1-21, March.
    6. Kalogeri, Christina & Galanis, George & Spyrou, Christos & Diamantis, Dimitris & Baladima, Foteini & Koukoula, Marika & Kallos, George, 2017. "Assessing the European offshore wind and wave energy resource for combined exploitation," Renewable Energy, Elsevier, vol. 101(C), pages 244-264.
    7. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    8. Wang, Xiaoming & Shang, Jianzhong & Luo, Zirong & Tang, Li & Zhang, Xiangpo & Li, Juan, 2012. "Reviews of power systems and environmental energy conversion for unmanned underwater vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1958-1970.
    9. Rusu, Eugen & Onea, Florin, 2016. "Estimation of the wave energy conversion efficiency in the Atlantic Ocean close to the European islands," Renewable Energy, Elsevier, vol. 85(C), pages 687-703.
    10. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Boyang & Li, Canpeng & Zhang, Baoshou & Deng, Fang & Yang, Hualin, 2023. "The effect of the different spacing ratios on wave energy converter of three floating bodies," Energy, Elsevier, vol. 268(C).
    2. Wang, Mangkuan & Shang, Jianzhong & Luo, Zirong & Lu, Zhongyue & Yao, Ganzhou, 2023. "Theoretical and numerical studies on improving absorption power of multi-body wave energy convert device with nonlinear bistable structure," Energy, Elsevier, vol. 282(C).
    3. Xiao, Han & Liu, Zhenwei & Zhang, Ran & Kelham, Andrew & Xu, Xiangyang & Wang, Xu, 2021. "Study of a novel rotational speed amplified dual turbine wheel wave energy converter," Applied Energy, Elsevier, vol. 301(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clemente, D. & Rosa-Santos, P. & Taveira-Pinto, F., 2021. "On the potential synergies and applications of wave energy converters: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. M. M. Amrutha & V. Sanil Kumar, 2019. "Changes in Wave Energy in the Shelf Seas of India during the Last 40 Years Based on ERA5 Reanalysis Data," Energies, MDPI, vol. 13(1), pages 1-23, December.
    3. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    4. Lavidas, George, 2019. "Energy and socio-economic benefits from the development of wave energy in Greece," Renewable Energy, Elsevier, vol. 132(C), pages 1290-1300.
    5. Chongfei Sun & Zirong Luo & Jianzhong Shang & Zhongyue Lu & Yiming Zhu & Guoheng Wu, 2018. "Design and Numerical Analysis of a Novel Counter-Rotating Self-Adaptable Wave Energy Converter Based on CFD Technology," Energies, MDPI, vol. 11(4), pages 1-21, March.
    6. Xiao, Han & Liu, Zhenwei & Zhang, Ran & Kelham, Andrew & Xu, Xiangyang & Wang, Xu, 2021. "Study of a novel rotational speed amplified dual turbine wheel wave energy converter," Applied Energy, Elsevier, vol. 301(C).
    7. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    8. Lorenzo Ciappi & Lapo Cheli & Irene Simonetti & Alessandro Bianchini & Giampaolo Manfrida & Lorenzo Cappietti, 2020. "Wave-to-Wire Model of an Oscillating-Water-Column Wave Energy Converter and Its Application to Mediterranean Energy Hot-Spots," Energies, MDPI, vol. 13(21), pages 1-28, October.
    9. Zou, Shangyan & Abdelkhalik, Ossama, 2020. "Time-varying linear quadratic Gaussian optimal control for three-degree-of-freedom wave energy converters," Renewable Energy, Elsevier, vol. 149(C), pages 217-225.
    10. Wen, Yi & Kamranzad, Bahareh & Lin, Pengzhi, 2022. "Joint exploitation potential of offshore wind and wave energy along the south and southeast coasts of China," Energy, Elsevier, vol. 249(C).
    11. Guillou, Nicolas & Chapalain, Georges, 2018. "Annual and seasonal variabilities in the performances of wave energy converters," Energy, Elsevier, vol. 165(PB), pages 812-823.
    12. Choupin, O. & Pinheiro Andutta, F. & Etemad-Shahidi, A. & Tomlinson, R., 2021. "A decision-making process for wave energy converter and location pairing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    13. Domenico Curto & Vincenzo Franzitta & Andrea Guercio, 2021. "Sea Wave Energy. A Review of the Current Technologies and Perspectives," Energies, MDPI, vol. 14(20), pages 1-31, October.
    14. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    15. Takvor H. Soukissian & Dimitra Denaxa & Flora Karathanasi & Aristides Prospathopoulos & Konstantinos Sarantakos & Athanasia Iona & Konstantinos Georgantas & Spyridon Mavrakos, 2017. "Marine Renewable Energy in the Mediterranean Sea: Status and Perspectives," Energies, MDPI, vol. 10(10), pages 1-56, September.
    16. Nadège Bouchonneau & Arnaud Coutrey & Vivianne Marie Bruère & Moacyr Araújo & Alex Costa da Silva, 2023. "Finite Element Modeling and Simulation of a Submerged Wave Energy Converter System for Application to Oceanic Islands in Tropical Atlantic," Energies, MDPI, vol. 16(4), pages 1-17, February.
    17. Mehdi Neshat & Nataliia Y. Sergiienko & Erfan Amini & Meysam Majidi Nezhad & Davide Astiaso Garcia & Bradley Alexander & Markus Wagner, 2020. "A New Bi-Level Optimisation Framework for Optimising a Multi-Mode Wave Energy Converter Design: A Case Study for the Marettimo Island, Mediterranean Sea," Energies, MDPI, vol. 13(20), pages 1-23, October.
    18. Morim, Joao & Cartwright, Nick & Hemer, Mark & Etemad-Shahidi, Amir & Strauss, Darrell, 2019. "Inter- and intra-annual variability of potential power production from wave energy converters," Energy, Elsevier, vol. 169(C), pages 1224-1241.
    19. Mota, P. & Pinto, J.P., 2014. "Wave energy potential along the western Portuguese coast," Renewable Energy, Elsevier, vol. 71(C), pages 8-17.
    20. Ciappi, Lorenzo & Simonetti, Irene & Bianchini, Alessandro & Cappietti, Lorenzo & Manfrida, Giampaolo, 2022. "Application of integrated wave-to-wire modelling for the preliminary design of oscillating water column systems for installations in moderate wave climates," Renewable Energy, Elsevier, vol. 194(C), pages 232-248.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3282-:d:185373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.