IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3273-d185168.html
   My bibliography  Save this article

Modelling and Experimental Analysis of a Polymer Electrolyte Membrane Water Electrolysis Cell at Different Operating Temperatures

Author

Listed:
  • Vincenzo Liso

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Giorgio Savoia

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Samuel Simon Araya

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Giovanni Cinti

    (Department of Engineering, Universitá degli Studi di Perugia, 06125 Perugia PG, Italy)

  • Søren Knudsen Kær

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

Abstract

In this paper, a simplified model of a Polymer Electrolyte Membrane (PEM) water electrolysis cell is presented and compared with experimental data at 60 °C and 80 °C. The model utilizes the same modelling approach used in previous work where the electrolyzer cell is divided in four subsections: cathode, anode, membrane and voltage. The model of the electrodes includes key electrochemical reactions and gas transport mechanism (i.e., H 2 , O 2 and H 2 O ) whereas the model of the membrane includes physical mechanisms such as water diffusion, electro osmotic drag and hydraulic pressure. Voltage was modelled including main overpotentials (i.e., activation, ohmic, concentration). First and second law efficiencies were defined. Key empirical parameters depending on temperature were identified in the activation and ohmic overpotentials. The electrodes reference exchange current densities and change transfer coefficients were related to activation overpotentials whereas hydrogen ion diffusion to Ohmic overvoltages. These model parameters were empirically fitted so that polarization curve obtained by the model predicted well the voltage at different current found by the experimental results. Finally, from the efficiency calculation, it was shown that at low current densities the electrolyzer cell absorbs heat from the surroundings. The model is not able to describe the transients involved during the cell electrochemical reactions, however these processes are assumed relatively fast. For this reason, the model can be implemented in system dynamic modelling for hydrogen production and storage where components dynamic is generally slower compared to the cell electrochemical reactions dynamics.

Suggested Citation

  • Vincenzo Liso & Giorgio Savoia & Samuel Simon Araya & Giovanni Cinti & Søren Knudsen Kær, 2018. "Modelling and Experimental Analysis of a Polymer Electrolyte Membrane Water Electrolysis Cell at Different Operating Temperatures," Energies, MDPI, vol. 11(12), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3273-:d:185168
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khan, M.J. & Iqbal, M.T., 2005. "Dynamic modeling and simulation of a small wind–fuel cell hybrid energy system," Renewable Energy, Elsevier, vol. 30(3), pages 421-439.
    2. Espinosa-López, Manuel & Darras, Christophe & Poggi, Philippe & Glises, Raynal & Baucour, Philippe & Rakotondrainibe, André & Besse, Serge & Serre-Combe, Pierre, 2018. "Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer," Renewable Energy, Elsevier, vol. 119(C), pages 160-173.
    3. Dominković, D.F. & Bačeković, I. & Pedersen, A.S. & Krajačić, G., 2018. "The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1823-1838.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feriel Mustapha & Damien Guilbert & Mohammed El-Ganaoui, 2022. "Investigation of Electrical and Thermal Performance of a Commercial PEM Electrolyzer under Dynamic Solicitations," Clean Technol., MDPI, vol. 4(4), pages 1-11, September.
    2. Arias, Ignacio & Battisti, Felipe G. & Romero-Ramos, J.A. & Pérez, Manuel & Valenzuela, Loreto & Cardemil, José & Escobar, Rodrigo, 2024. "Assessing system-level synergies between photovoltaic and proton exchange membrane electrolyzers for solar-powered hydrogen production," Applied Energy, Elsevier, vol. 368(C).
    3. Mohamed Koundi & Hassan El Fadil & Zakaria EL Idrissi & Abdellah Lassioui & Abdessamad Intidam & Tasnime Bouanou & Soukaina Nady & Aziz Rachid, 2023. "Investigation of Hydrogen Production System-Based PEM EL: PEM EL Modeling, DC/DC Power Converter, and Controller Design Approaches," Clean Technol., MDPI, vol. 5(2), pages 1-38, April.
    4. Sumit Sood & Om Prakash & Mahdi Boukerdja & Jean-Yves Dieulot & Belkacem Ould-Bouamama & Mathieu Bressel & Anne-Lise Gehin, 2020. "Generic Dynamical Model of PEM Electrolyser under Intermittent Sources," Energies, MDPI, vol. 13(24), pages 1-34, December.
    5. Damien Guilbert & Gianpaolo Vitale, 2020. "Improved Hydrogen-Production-Based Power Management Control of a Wind Turbine Conversion System Coupled with Multistack Proton Exchange Membrane Electrolyzers," Energies, MDPI, vol. 13(5), pages 1-18, March.
    6. Burin Yodwong & Damien Guilbert & Matheepot Phattanasak & Wattana Kaewmanee & Melika Hinaje & Gianpaolo Vitale, 2020. "Faraday’s Efficiency Modeling of a Proton Exchange Membrane Electrolyzer Based on Experimental Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
    7. Ruiz Diaz, Daniela Fernanda & Valenzuela, Edgar & Wang, Yun, 2022. "A component-level model of polymer electrolyte membrane electrolysis cells for hydrogen production," Applied Energy, Elsevier, vol. 321(C).
    8. Damien Guilbert & Gianpaolo Vitale, 2019. "Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model," Energies, MDPI, vol. 12(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Wang, Bowen & Ni, Meng & Zhang, Shiye & Liu, Zhi & Jiang, Shangfeng & Zhang, Longhai & Zhou, Feikun & Jiao, Kui, 2023. "Two-phase analytical modeling and intelligence parameter estimation of proton exchange membrane electrolyzer for hydrogen production," Renewable Energy, Elsevier, vol. 211(C), pages 202-213.
    3. Baumeister, Stefan & Leung, Abraham & Ryley, Tim, 2020. "The emission reduction potentials of First Generation Electric Aircraft (FGEA) in Finland," Journal of Transport Geography, Elsevier, vol. 85(C).
    4. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    5. Goutte, Stéphane & Mhadhbi, Mayssa, 2024. "Analyzing Crisis Dynamics: How metal-energy Markets influence green electricity investments," Energy Economics, Elsevier, vol. 134(C).
    6. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    7. Gebara, C.H. & Laurent, A., 2023. "National SDG-7 performance assessment to support achieving sustainable energy for all within planetary limits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Schmitz Gonçalves, Daniel Neves & Goes, George Vasconcelos & de Almeida D'Agosto, Márcio & Albergaria de Mello Bandeira, Renata, 2019. "Energy use and emissions scenarios for transport to gauge progress toward national commitments," Energy Policy, Elsevier, vol. 135(C).
    9. Nayeripour, Majid & Hoseintabar, Mohammad & Niknam, Taher, 2011. "Frequency deviation control by coordination control of FC and double-layer capacitor in an autonomous hybrid renewable energy power generation system," Renewable Energy, Elsevier, vol. 36(6), pages 1741-1746.
    10. Kashefi Kaviani, A. & Riahy, G.H. & Kouhsari, SH.M., 2009. "Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages," Renewable Energy, Elsevier, vol. 34(11), pages 2380-2390.
    11. Liang, Yanan & Kleijn, René & Tukker, Arnold & van der Voet, Ester, 2022. "Material requirements for low-carbon energy technologies: A quantitative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Duchaud, Jean-Laurent & Notton, Gilles & Darras, Christophe & Voyant, Cyril, 2019. "Multi-Objective Particle Swarm optimal sizing of a renewable hybrid power plant with storage," Renewable Energy, Elsevier, vol. 131(C), pages 1156-1167.
    13. Sharifi Asl, S.M. & Rowshanzamir, S. & Eikani, M.H., 2010. "Modelling and simulation of the steady-state and dynamic behaviour of a PEM fuel cell," Energy, Elsevier, vol. 35(4), pages 1633-1646.
    14. Zhang, Nan & Lu, Yiji & Kadam, Sambhaji & Yu, Zhibin, 2023. "A fuel cell range extender integrating with heat pump for cabin heat and power generation," Applied Energy, Elsevier, vol. 348(C).
    15. Dominik Franjo Dominković & Greg Stark & Bri-Mathias Hodge & Allan Schrøder Pedersen, 2018. "Integrated Energy Planning with a High Share of Variable Renewable Energy Sources for a Caribbean Island," Energies, MDPI, vol. 11(9), pages 1-15, August.
    16. Cai, Jingyong & Weng, Chu & Zhang, Ruonan & Li, Qifen & Zhang, Tao & Shi, Zhengrong, 2023. "Comparative analysis on the dynamic operation performance of photovoltaic/thermal powered proton exchange membrane water electrolysis cogeneration system (PV/T-PEMWE) under different connection modes," Renewable Energy, Elsevier, vol. 219(P2).
    17. An, Qi & Jin, Zhijiang & Li, Nan & Wang, Hongchao & Schmierer, Joel & Wei, Cundi & Hu, Hongyu & Gao, Qian & Woodall, Jerry M., 2022. "Study on the liquid phase-derived activation mechanism in Al-rich alloy hydrolysis reaction for hydrogen production," Energy, Elsevier, vol. 247(C).
    18. Zaneti, Letícia A.L. & Arias, Nataly Bañol & de Almeida, Madson C. & Rider, Marcos J., 2022. "Sustainable charging schedule of electric buses in a University Campus: A rolling horizon approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    19. Mohd Bilal & Ibrahim Alsaidan & Muhannad Alaraj & Fahad M. Almasoudi & Mohammad Rizwan, 2022. "Techno-Economic and Environmental Analysis of Grid-Connected Electric Vehicle Charging Station Using AI-Based Algorithm," Mathematics, MDPI, vol. 10(6), pages 1-40, March.
    20. Damien Guilbert & Gianpaolo Vitale, 2019. "Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model," Energies, MDPI, vol. 12(4), pages 1-17, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3273-:d:185168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.