IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i12p3273-d185168.html
   My bibliography  Save this article

Modelling and Experimental Analysis of a Polymer Electrolyte Membrane Water Electrolysis Cell at Different Operating Temperatures

Author

Listed:
  • Vincenzo Liso

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Giorgio Savoia

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Samuel Simon Araya

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Giovanni Cinti

    (Department of Engineering, Universitá degli Studi di Perugia, 06125 Perugia PG, Italy)

  • Søren Knudsen Kær

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

Abstract

In this paper, a simplified model of a Polymer Electrolyte Membrane (PEM) water electrolysis cell is presented and compared with experimental data at 60 °C and 80 °C. The model utilizes the same modelling approach used in previous work where the electrolyzer cell is divided in four subsections: cathode, anode, membrane and voltage. The model of the electrodes includes key electrochemical reactions and gas transport mechanism (i.e., H 2 , O 2 and H 2 O ) whereas the model of the membrane includes physical mechanisms such as water diffusion, electro osmotic drag and hydraulic pressure. Voltage was modelled including main overpotentials (i.e., activation, ohmic, concentration). First and second law efficiencies were defined. Key empirical parameters depending on temperature were identified in the activation and ohmic overpotentials. The electrodes reference exchange current densities and change transfer coefficients were related to activation overpotentials whereas hydrogen ion diffusion to Ohmic overvoltages. These model parameters were empirically fitted so that polarization curve obtained by the model predicted well the voltage at different current found by the experimental results. Finally, from the efficiency calculation, it was shown that at low current densities the electrolyzer cell absorbs heat from the surroundings. The model is not able to describe the transients involved during the cell electrochemical reactions, however these processes are assumed relatively fast. For this reason, the model can be implemented in system dynamic modelling for hydrogen production and storage where components dynamic is generally slower compared to the cell electrochemical reactions dynamics.

Suggested Citation

  • Vincenzo Liso & Giorgio Savoia & Samuel Simon Araya & Giovanni Cinti & Søren Knudsen Kær, 2018. "Modelling and Experimental Analysis of a Polymer Electrolyte Membrane Water Electrolysis Cell at Different Operating Temperatures," Energies, MDPI, vol. 11(12), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3273-:d:185168
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/12/3273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/12/3273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khan, M.J. & Iqbal, M.T., 2005. "Dynamic modeling and simulation of a small wind–fuel cell hybrid energy system," Renewable Energy, Elsevier, vol. 30(3), pages 421-439.
    2. Espinosa-López, Manuel & Darras, Christophe & Poggi, Philippe & Glises, Raynal & Baucour, Philippe & Rakotondrainibe, André & Besse, Serge & Serre-Combe, Pierre, 2018. "Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer," Renewable Energy, Elsevier, vol. 119(C), pages 160-173.
    3. Dominković, D.F. & Bačeković, I. & Pedersen, A.S. & Krajačić, G., 2018. "The future of transportation in sustainable energy systems: Opportunities and barriers in a clean energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1823-1838.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feriel Mustapha & Damien Guilbert & Mohammed El-Ganaoui, 2022. "Investigation of Electrical and Thermal Performance of a Commercial PEM Electrolyzer under Dynamic Solicitations," Clean Technol., MDPI, vol. 4(4), pages 1-11, September.
    2. Arias, Ignacio & Battisti, Felipe G. & Romero-Ramos, J.A. & Pérez, Manuel & Valenzuela, Loreto & Cardemil, José & Escobar, Rodrigo, 2024. "Assessing system-level synergies between photovoltaic and proton exchange membrane electrolyzers for solar-powered hydrogen production," Applied Energy, Elsevier, vol. 368(C).
    3. Mohamed Koundi & Hassan El Fadil & Zakaria EL Idrissi & Abdellah Lassioui & Abdessamad Intidam & Tasnime Bouanou & Soukaina Nady & Aziz Rachid, 2023. "Investigation of Hydrogen Production System-Based PEM EL: PEM EL Modeling, DC/DC Power Converter, and Controller Design Approaches," Clean Technol., MDPI, vol. 5(2), pages 1-38, April.
    4. Sumit Sood & Om Prakash & Mahdi Boukerdja & Jean-Yves Dieulot & Belkacem Ould-Bouamama & Mathieu Bressel & Anne-Lise Gehin, 2020. "Generic Dynamical Model of PEM Electrolyser under Intermittent Sources," Energies, MDPI, vol. 13(24), pages 1-34, December.
    5. Damien Guilbert & Gianpaolo Vitale, 2020. "Improved Hydrogen-Production-Based Power Management Control of a Wind Turbine Conversion System Coupled with Multistack Proton Exchange Membrane Electrolyzers," Energies, MDPI, vol. 13(5), pages 1-18, March.
    6. Burin Yodwong & Damien Guilbert & Matheepot Phattanasak & Wattana Kaewmanee & Melika Hinaje & Gianpaolo Vitale, 2020. "Faraday’s Efficiency Modeling of a Proton Exchange Membrane Electrolyzer Based on Experimental Data," Energies, MDPI, vol. 13(18), pages 1-14, September.
    7. Sun, Mingjia & Zhang, Yumeng & Liu, Luyao & Nian, Xingheng & Zhang, Hanfei & Duan, Liqiang, 2025. "Dynamic performance analysis of hydrogen production and hot standby dual-mode system via proton exchange membrane electrolyzer and phase change material-based heat storage," Applied Energy, Elsevier, vol. 377(PC).
    8. Ruiz Diaz, Daniela Fernanda & Valenzuela, Edgar & Wang, Yun, 2022. "A component-level model of polymer electrolyte membrane electrolysis cells for hydrogen production," Applied Energy, Elsevier, vol. 321(C).
    9. Damien Guilbert & Gianpaolo Vitale, 2019. "Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model," Energies, MDPI, vol. 12(4), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    2. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    3. Schmitz Gonçalves, Daniel Neves & Goes, George Vasconcelos & de Almeida D'Agosto, Márcio & Albergaria de Mello Bandeira, Renata, 2019. "Energy use and emissions scenarios for transport to gauge progress toward national commitments," Energy Policy, Elsevier, vol. 135(C).
    4. Nayeripour, Majid & Hoseintabar, Mohammad & Niknam, Taher, 2011. "Frequency deviation control by coordination control of FC and double-layer capacitor in an autonomous hybrid renewable energy power generation system," Renewable Energy, Elsevier, vol. 36(6), pages 1741-1746.
    5. Tang, Yinglun & Su, Shangchun & Niu, Xiaoxuan & Song, Zhehui & Li, Wenjia, 2024. "A gradient porous transport layer enabling a high-performance proton-exchange membrane electrolysis cell," Renewable Energy, Elsevier, vol. 237(PC).
    6. Kashefi Kaviani, A. & Riahy, G.H. & Kouhsari, SH.M., 2009. "Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages," Renewable Energy, Elsevier, vol. 34(11), pages 2380-2390.
    7. Sharifi Asl, S.M. & Rowshanzamir, S. & Eikani, M.H., 2010. "Modelling and simulation of the steady-state and dynamic behaviour of a PEM fuel cell," Energy, Elsevier, vol. 35(4), pages 1633-1646.
    8. Zhang, Nan & Lu, Yiji & Kadam, Sambhaji & Yu, Zhibin, 2023. "A fuel cell range extender integrating with heat pump for cabin heat and power generation," Applied Energy, Elsevier, vol. 348(C).
    9. Dominik Franjo Dominković & Greg Stark & Bri-Mathias Hodge & Allan Schrøder Pedersen, 2018. "Integrated Energy Planning with a High Share of Variable Renewable Energy Sources for a Caribbean Island," Energies, MDPI, vol. 11(9), pages 1-15, August.
    10. Damien Guilbert & Gianpaolo Vitale, 2019. "Dynamic Emulation of a PEM Electrolyzer by Time Constant Based Exponential Model," Energies, MDPI, vol. 12(4), pages 1-17, February.
    11. Zhu, Yanxi & Zhang, Yixiang & Bin, Shiyu & Chen, Zeyi & Zhang, Fanhang & Gong, Shihao & Xia, Yan & Duan, Xiongbo, 2024. "Effects of key design and operating parameters on the performance of the PEM water electrolysis for hydrogen production," Renewable Energy, Elsevier, vol. 235(C).
    12. Chen, Hung-Cheng, 2013. "Optimum capacity determination of stand-alone hybrid generation system considering cost and reliability," Applied Energy, Elsevier, vol. 103(C), pages 155-164.
    13. Jann Michael Weinand, 2020. "Reviewing Municipal Energy System Planning in a Bibliometric Analysis: Evolution of the Research Field between 1991 and 2019," Energies, MDPI, vol. 13(6), pages 1-18, March.
    14. Zhang, Hongwei & Zhang, Yubo & Gao, Wang & Li, Yingli, 2023. "Extreme quantile spillovers and drivers among clean energy, electricity and energy metals markets," International Review of Financial Analysis, Elsevier, vol. 86(C).
    15. Isa, Normazlina Mat & Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2016. "A techno-economic assessment of a combined heat and power photovoltaic/fuel cell/battery energy system in Malaysia hospital," Energy, Elsevier, vol. 112(C), pages 75-90.
    16. Lin, Jianhui & Gu, Yujiong & Wang, Zijie & Zhao, Ziliang & Zhu, Ping, 2024. "Operational characteristics of an integrated island energy system based on multi-energy complementarity," Renewable Energy, Elsevier, vol. 230(C).
    17. Qiu, Xiaoyan & Zhang, Hang & Qiu, Yiwei & Zhou, Yi & Zang, Tianlei & Zhou, Buxiang & Qi, Ruomei & Lin, Jin & Wang, Jiepeng, 2023. "Dynamic parameter estimation of the alkaline electrolysis system combining Bayesian inference and adaptive polynomial surrogate models," Applied Energy, Elsevier, vol. 348(C).
    18. Kozera, Agnieszka & Satoła, Łukasz & Standar, Aldona, 2024. "European Union co-funded investments in low-emission and green energy in urban public transport in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    19. Uzunoglu, M. & Onar, O.C. & Alam, M.S., 2009. "Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications," Renewable Energy, Elsevier, vol. 34(3), pages 509-520.
    20. Isabel C. Gil-García & Mª Socorro García-Cascales & Habib Dagher & Angel Molina-García, 2021. "Electric Vehicle and Renewable Energy Sources: Motor Fusion in the Energy Transition from a Multi-Indicator Perspective," Sustainability, MDPI, vol. 13(6), pages 1-19, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:12:p:3273-:d:185168. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.