IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3218-d184157.html
   My bibliography  Save this article

Energy and Economic Analysis for Greenhouse Ground Insulation Design

Author

Listed:
  • James Bambara

    (Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada)

  • Andreas K. Athienitis

    (Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada)

Abstract

Energy and life cycle cost analysis were employed to identify the most-cost effective ground envelope design for a greenhouse that employs supplemental lighting located in Ottawa, Ontario, Canada (45.4° N). The envelope design alternatives that were investigated consist of installing insulation vertically around the perimeter and horizontally beneath the footprint of a greenhouse with a concrete slab and unfinished soil floor. Detailed thermal interaction between the greenhouse and the ground surface is achieved by considering 3-dimensional conduction heat transfer within the TRNSYS 17.2 simulation software. The portion of total heat loss that occurred through the ground was approximately 4% and permutations in ground insulation design reduced heating energy consumption by up to 1%. For the two floor designs, the highest net savings was achieved when perimeter and floor zone horizontal insulation was installed whereas a financial loss occurred when it was also placed beneath the crop zone. However, in all cases, the improvement in economic performance was small (net savings below $4000 and reduction in life cycle under 0.2%). Combined energy and life cycle cost analysis is valuable for selecting optimal envelope designs that are capable of lowering energy consumption, improving economics and enhancing greenhouse durability.

Suggested Citation

  • James Bambara & Andreas K. Athienitis, 2018. "Energy and Economic Analysis for Greenhouse Ground Insulation Design," Energies, MDPI, vol. 11(11), pages 1-15, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3218-:d:184157
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3218/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3218/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Al-Kayssi, A.W., 2002. "Spatial variability of soil temperature under greenhouse conditions," Renewable Energy, Elsevier, vol. 27(3), pages 453-462.
    2. Bambara, James & Athienitis, Andreas K., 2019. "Energy and economic analysis for the design of greenhouses with semi-transparent photovoltaic cladding," Renewable Energy, Elsevier, vol. 131(C), pages 1274-1287.
    3. Gupta, Mathala J & Chandra, Pitam, 2002. "Effect of greenhouse design parameters on conservation of energy for greenhouse environmental control," Energy, Elsevier, vol. 27(8), pages 777-794.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paweł Sokołowski & Grzegorz Nawalany, 2020. "Analysis of Energy Exchange with the Ground in a Two-Chamber Vegetable Cold Store, Assuming Different Lengths of Technological Break, with the Use of a Numerical Calculation Method—A Case Study," Energies, MDPI, vol. 13(18), pages 1-15, September.
    2. James Bambara & Andreas K. Athienitis & Ursula Eicker, 2021. "Decarbonizing Local Mobility and Greenhouse Agriculture through Residential Building Energy Upgrades: A Case Study for Québec," Energies, MDPI, vol. 14(20), pages 1-31, October.
    3. Grzegorz Nawalany & Paweł Sokołowski, 2022. "Interaction between a Cyclically Heated Building and the Ground, for Selected Locations in Europe," Energies, MDPI, vol. 15(20), pages 1-17, October.
    4. Nima Asgari & Matthew T. McDonald & Joshua M. Pearce, 2023. "Energy Modeling and Techno-Economic Feasibility Analysis of Greenhouses for Tomato Cultivation Utilizing the Waste Heat of Cryptocurrency Miners," Energies, MDPI, vol. 16(3), pages 1-42, January.
    5. Costantino, Andrea & Comba, Lorenzo & Sicardi, Giacomo & Bariani, Mauro & Fabrizio, Enrico, 2021. "Energy performance and climate control in mechanically ventilated greenhouses: A dynamic modelling-based assessment and investigation," Applied Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Akrami & Alaa H. Salah & Akbar A. Javadi & Hassan E.S. Fath & Matthew J. Hassanein & Raziyeh Farmani & Mahdieh Dibaj & Abdelazim Negm, 2020. "Towards a Sustainable Greenhouse: Review of Trends and Emerging Practices in Analysing Greenhouse Ventilation Requirements to Sustain Maximum Agricultural Yield," Sustainability, MDPI, vol. 12(7), pages 1-18, April.
    2. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Ghasemi Mobtaker, Hassan & Ajabshirchi, Yahya & Ranjbar, Seyed Faramarz & Matloobi, Mansour, 2016. "Solar energy conservation in greenhouse: Thermal analysis and experimental validation," Renewable Energy, Elsevier, vol. 96(PA), pages 509-519.
    4. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    5. Premaratne Samaranayake & Weiguang Liang & Zhong-Hua Chen & David Tissue & Yi-Chen Lan, 2020. "Sustainable Protected Cropping: A Case Study of Seasonal Impacts on Greenhouse Energy Consumption during Capsicum Production," Energies, MDPI, vol. 13(17), pages 1-23, August.
    6. Li, Zhi & Yano, Akira & Yoshioka, Hidekazu, 2020. "Feasibility study of a blind-type photovoltaic roof-shade system designed for simultaneous production of crops and electricity in a greenhouse," Applied Energy, Elsevier, vol. 279(C).
    7. Ouazzani Chahidi, Laila & Fossa, Marco & Priarone, Antonella & Mechaqrane, Abdellah, 2021. "Energy saving strategies in sustainable greenhouse cultivation in the mediterranean climate – A case study," Applied Energy, Elsevier, vol. 282(PA).
    8. Adnan Rasheed & Jong Won Lee & Hyun Woo Lee, 2018. "Development and Optimization of a Building Energy Simulation Model to Study the Effect of Greenhouse Design Parameters," Energies, MDPI, vol. 11(8), pages 1-19, August.
    9. Uk-Hyeon Yeo & Sang-Yeon Lee & Se-Jun Park & Jun-Gyu Kim & Young-Bae Choi & Rack-Woo Kim & Jong Hwa Shin & In-Bok Lee, 2022. "Rooftop Greenhouse: (1) Design and Validation of a BES Model for a Plastic-Covered Greenhouse Considering the Tomato Crop Model and Natural Ventilation Characteristics," Agriculture, MDPI, vol. 12(7), pages 1-25, June.
    10. Lin, Terry & Goldsworthy, Mark & Chavan, Sachin & Liang, Weiguang & Maier, Chelsea & Ghannoum, Oula & Cazzonelli, Christopher I. & Tissue, David T. & Lan, Yi-Chen & Sethuvenkatraman, Subbu & Lin, Han , 2022. "A novel cover material improves cooling energy and fertigation efficiency for glasshouse eggplant production," Energy, Elsevier, vol. 251(C).
    11. James Bambara & Andreas K. Athienitis & Ursula Eicker, 2021. "Decarbonizing Local Mobility and Greenhouse Agriculture through Residential Building Energy Upgrades: A Case Study for Québec," Energies, MDPI, vol. 14(20), pages 1-31, October.
    12. Asgharipour, Mohammad Reza & Amiri, Zahra & Campbell, Daniel E., 2020. "Evaluation of the sustainability of four greenhouse vegetable production ecosystems based on an analysis of emergy and social characteristics”," Ecological Modelling, Elsevier, vol. 424(C).
    13. Feng, Chaoqing & Zhang, Lizhuang & Wang, Rui & Yang, Hongbin & Xu, Zhao & Yan, Suying, 2021. "Greenhouse cover plate with dimming and temperature control function," Energy, Elsevier, vol. 221(C).
    14. Li, Bo & Shi, Bijiao & Yao, Zhenzhu & Kumar Shukla, Manoj & Du, Taisheng, 2020. "Energy partitioning and microclimate of solar greenhouse under drip and furrow irrigation systems," Agricultural Water Management, Elsevier, vol. 234(C).
    15. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.
    16. Muñoz-Liesa, Joan & Royapoor, Mohammad & López-Capel, Elisa & Cuerva, Eva & Rufí-Salís, Martí & Gassó-Domingo, Santiago & Josa, Alejandro, 2020. "Quantifying energy symbiosis of building-integrated agriculture in a mediterranean rooftop greenhouse," Renewable Energy, Elsevier, vol. 156(C), pages 696-709.
    17. Grzegorz Nawalany & Paweł Sokołowski, 2021. "Numerical Analysis of the Effect of Ground Dampness on Heat Transfer between Greenhouse and Ground," Sustainability, MDPI, vol. 13(6), pages 1-10, March.
    18. Parajuli, Samvid & Narayan Bhattarai, Tek & Gorjian, Shiva & Vithanage, Meththika & Raj Paudel, Shukra, 2023. "Assessment of potential renewable energy alternatives for a typical greenhouse aquaponics in Himalayan Region of Nepal," Applied Energy, Elsevier, vol. 344(C).
    19. Marco Hernandez Velasco, 2021. "Enabling Year-round Cultivation in the Nordics-Agrivoltaics and Adaptive LED Lighting Control of Daily Light Integral," Agriculture, MDPI, vol. 11(12), pages 1-31, December.
    20. Wu, Xiaoyang & Li, Yiming & Jiang, Lingling & Wang, Yang & Liu, Xingan & Li, Tianlai, 2023. "A systematic analysis of multiple structural parameters of Chinese solar greenhouse based on the thermal performance," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3218-:d:184157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.