IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6014-d640356.html
   My bibliography  Save this article

Energy Minimisation in a Protected Cropping Facility Using Multi-Temperature Acquisition Points and Control of Ventilation Settings

Author

Listed:
  • Premaratne Samaranayake

    (School of Business, Western Sydney University, Penrith, NSW 2751, Australia)

  • Chelsea Maier

    (National Vegetable Protected Cropping Centre, Western Sydney University, Penrith, NSW 2751, Australia)

  • Sachin Chavan

    (Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia)

  • Weiguang Liang

    (National Vegetable Protected Cropping Centre, Western Sydney University, Penrith, NSW 2751, Australia)

  • Zhong-Hua Chen

    (Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
    School of Science, Western Sydney University, Penrith, NSW 2751, Australia)

  • David T. Tissue

    (Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia)

  • Yi-Chen Lan

    (School of Business, Western Sydney University, Penrith, NSW 2751, Australia)

Abstract

Energy management in protected cropping is critical due to the high cost of energy use in high-tech greenhouse facilities. The main purpose of this research was to investigate the optimal strategy to reduce cooling energy consumption, by regulating the settings (opening/closing) of either vents or curtains during the day, at the protected cropping facility at Western Sydney University. We measured daily changes in air temperature and energy consumption under four treatments (open/closed combinations of vents and shade screens) and developed an optimal cooling strategy for energy management using multi-temperature acquisition points at different heights within a greenhouse compartment. The optimal treatment (vents open/curtains closed) reduced energy load at the rooftop, thereby maintaining a desirable plant canopy temperature profile, and reducing cooling energy. Daily energy consumption was lowest for vents open/curtains closed (70.5 kWh) and highest for vents closed/curtains open (121 kWh). It was also found that delaying the operation of opening and closing of vents and curtains until the plant canopy temperature reached 25 °C reduced cooling energy consumption and decreased heating energy consumption in the morning (e.g., 08:00 to 10:00). The estimated savings of 1.83 kWh per 1 °C cooling between the optimal (vents open/curtains closed) and least optimal (vents closed/curtains open) conditions had the potential for significant energy savings at 494 kWh per °C over a crop cycle of nine months in warm weather conditions. However, selection of the optimal cooling strategy utilising control of vents and curtains must also account for the impact from other greenhouse environmental factors, including light, humidity, and CO 2 concentration, which may be crop specific.

Suggested Citation

  • Premaratne Samaranayake & Chelsea Maier & Sachin Chavan & Weiguang Liang & Zhong-Hua Chen & David T. Tissue & Yi-Chen Lan, 2021. "Energy Minimisation in a Protected Cropping Facility Using Multi-Temperature Acquisition Points and Control of Ventilation Settings," Energies, MDPI, vol. 14(19), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6014-:d:640356
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6014/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6014/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Premaratne Samaranayake & Weiguang Liang & Zhong-Hua Chen & David Tissue & Yi-Chen Lan, 2020. "Sustainable Protected Cropping: A Case Study of Seasonal Impacts on Greenhouse Energy Consumption during Capsicum Production," Energies, MDPI, vol. 13(17), pages 1-23, August.
    2. Khoshnevisan, Benyamin & Shariati, Hanifreza Motamed & Rafiee, Shahin & Mousazadeh, Hossein, 2014. "Comparison of energy consumption and GHG emissions of open field and greenhouse strawberry production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 316-324.
    3. Joana Almeida & Wouter M.J. Achten & Bruno Verbist & Reindert F. Heuts & Eddie Schrevens & Bart Muys, 2014. "Carbon and Water Footprints and Energy Use of Greenhouse Tomato Production in Northern Italy," Journal of Industrial Ecology, Yale University, vol. 18(6), pages 898-908, December.
    4. Yongtao Shen & Ruihua Wei & Lihong Xu, 2018. "Energy Consumption Prediction of a Greenhouse and Optimization of Daily Average Temperature," Energies, MDPI, vol. 11(1), pages 1-17, January.
    5. Bambara, James & Athienitis, Andreas K., 2019. "Energy and economic analysis for the design of greenhouses with semi-transparent photovoltaic cladding," Renewable Energy, Elsevier, vol. 131(C), pages 1274-1287.
    6. Yildizhan, Hasan, 2018. "Energy, exergy utilization and CO2 emission of strawberry production in greenhouse and open field," Energy, Elsevier, vol. 143(C), pages 417-423.
    7. Golzar, Farzin & Heeren, Niko & Hellweg, Stefanie & Roshandel, Ramin, 2018. "A novel integrated framework to evaluate greenhouse energy demand and crop yield production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 487-501.
    8. Barkat Rabbi & Zhong-Hua Chen & Subbu Sethuvenkatraman, 2019. "Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods," Energies, MDPI, vol. 12(14), pages 1-24, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Premaratne Samaranayake & Weiguang Liang & Zhong-Hua Chen & David Tissue & Yi-Chen Lan, 2020. "Sustainable Protected Cropping: A Case Study of Seasonal Impacts on Greenhouse Energy Consumption during Capsicum Production," Energies, MDPI, vol. 13(17), pages 1-23, August.
    2. Zhang, Menghang & Yan, Tingxiang & Wang, Wei & Jia, Xuexiu & Wang, Jin & Klemeš, Jiří Jaromír, 2022. "Energy-saving design and control strategy towards modern sustainable greenhouse: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    3. Gianluca Serale & Luca Gnoli & Emanuele Giraudo & Enrico Fabrizio, 2021. "A Supervisory Control Strategy for Improving Energy Efficiency of Artificial Lighting Systems in Greenhouses," Energies, MDPI, vol. 14(1), pages 1-19, January.
    4. Lin, Terry & Goldsworthy, Mark & Chavan, Sachin & Liang, Weiguang & Maier, Chelsea & Ghannoum, Oula & Cazzonelli, Christopher I. & Tissue, David T. & Lan, Yi-Chen & Sethuvenkatraman, Subbu & Lin, Han , 2022. "A novel cover material improves cooling energy and fertigation efficiency for glasshouse eggplant production," Energy, Elsevier, vol. 251(C).
    5. Anna-Maria N. Dimitropoulou & Vasileios Z. Maroulis & Eugenia N. Giannini, 2023. "A Simple and Effective Model for Predicting the Thermal Energy Requirements of Greenhouses in Europe," Energies, MDPI, vol. 16(19), pages 1-27, September.
    6. Costantino, Andrea & Comba, Lorenzo & Sicardi, Giacomo & Bariani, Mauro & Fabrizio, Enrico, 2021. "Energy performance and climate control in mechanically ventilated greenhouses: A dynamic modelling-based assessment and investigation," Applied Energy, Elsevier, vol. 288(C).
    7. Theodoros Petrakis & Angeliki Kavga & Vasileios Thomopoulos & Athanassios A. Argiriou, 2022. "Neural Network Model for Greenhouse Microclimate Predictions," Agriculture, MDPI, vol. 12(6), pages 1-17, May.
    8. Carson Kinney & Alireza Dehghani-Sanij & SeyedBijan Mahbaz & Maurice B. Dusseault & Jatin S. Nathwani & Roydon A. Fraser, 2019. "Geothermal Energy for Sustainable Food Production in Canada’s Remote Northern Communities," Energies, MDPI, vol. 12(21), pages 1-25, October.
    9. Mousavi, Masoumeh & Taki, Morteza & Raeini, Mahmoud Ghaseminejd & Soheilifard, Farshad, 2023. "Evaluation of energy consumption and environmental impacts of strawberry production in different greenhouse structures using life cycle assessment (LCA) approach," Energy, Elsevier, vol. 280(C).
    10. Morice R. O. Odhiambo & Adnan Abbas & Xiaochan Wang & Ehsan Elahi, 2020. "Thermo-Environmental Assessment of a Heated Venlo-Type Greenhouse in the Yangtze River Delta Region," Sustainability, MDPI, vol. 12(24), pages 1-34, December.
    11. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Zhang, XiaoHong & Pan, HengYu & Cao, Jun & Li, JinRong, 2015. "Energy consumption of China’s crop production system and the related emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 111-125.
    13. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    14. Chul-Ho Kim & Seung-Eon Lee & Kang-Soo Kim, 2018. "Analysis of Energy Saving Potential in High-Performance Building Technologies under Korean Climatic Conditions," Energies, MDPI, vol. 11(4), pages 1-34, April.
    15. Bellassen Valentin & Drut Marion & Antonioli Federico & Brečić Ružica & Donati Michele & Ferrer-Pérez Hugo & Gauvrit Lisa & Hoang Viet & Knutsen Steinnes Kamilla & Lilavanichakul Apichaya & Majewski E, 2021. "The Carbon and Land Footprint of Certified Food Products," Journal of Agricultural & Food Industrial Organization, De Gruyter, vol. 19(2), pages 113-126, December.
    16. Gloria Alexandra Ortiz Rocha & Maria Angelica Pichimata & Edwin Villagran, 2021. "Research on the Microclimate of Protected Agriculture Structures Using Numerical Simulation Tools: A Technical and Bibliometric Analysis as a Contribution to the Sustainability of Under-Cover Cropping," Sustainability, MDPI, vol. 13(18), pages 1-40, September.
    17. Chiara Terrosi & Sonia Cacini & Gianluca Burchi & Maurizio Cutini & Massimo Brambilla & Carlo Bisaglia & Daniele Massa & Marco Fedrizzi, 2020. "Evaluation of Compressor Heat Pump for Root Zone Heating as an Alternative Heating Source for Leafy Vegetable Cultivation," Energies, MDPI, vol. 13(3), pages 1-15, February.
    18. Jerónimo Ramos-Teodoro & Adrián Giménez-Miralles & Francisco Rodríguez & Manuel Berenguel, 2020. "A Flexible Tool for Modeling and Optimal Dispatch of Resources in Agri-Energy Hubs," Sustainability, MDPI, vol. 12(21), pages 1-24, October.
    19. Pritpal Singh & Gurdeep Singh & G. P. S. Sodhi, 2022. "Data envelopment analysis based optimization for improving net ecosystem carbon and energy budget in cotton (Gossypium hirsutum L.) cultivation: methods and a case study of north-western India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2079-2119, February.
    20. Zhang, Guanshan & Ding, Xiaoming & Li, Tianhua & Pu, Wenyang & Lou, Wei & Hou, Jialin, 2020. "Dynamic energy balance model of a glass greenhouse: An experimental validation and solar energy analysis," Energy, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6014-:d:640356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.