IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i12p2434-d242579.html
   My bibliography  Save this article

A Three-Phase Transformerless T-Type- NPC-MLI for Grid Connected PV Systems with Common-Mode Leakage Current Mitigation

Author

Listed:
  • P. Madasamy

    (Department of Electrical and Electronics Engineering, Alagappa Chettiar college of Engineering and Technology, Karaikudi 630 003, Tamilnadu, India)

  • V. Suresh Kumar

    (Department of Electrical and Electronics Engineering, Thiagarajar College of Engineering, Madurai 625 015, Tamilnadu, India)

  • P. Sanjeevikumar

    (Center for Bioenergy and Green Engineering, Department of Energy Technology, Aalborg University, 6700 Esbjerg, Denmark)

  • Jens Bo Holm-Nielsen

    (Center for Bioenergy and Green Engineering, Department of Energy Technology, Aalborg University, 6700 Esbjerg, Denmark)

  • Eklas Hosain

    (Oregon Renewable Energy Center (OREC), Department of Electrical Engineering & Renewable Energy, Oregon Tech, Klamath Falls, OR 97601, USA)

  • C. Bharatiraja

    (Department of Electrical and Electronics Engineering, SRM University, Chennai 603 203, Tamilnadu, India)

Abstract

DC to AC inverters are the well-known and improved in various kinds photovoltaic (PV) and gird tied systems. However, these inverters are require interfacing transformers to be synchronized with the grid-connected system. Therefore, the system is bulky and not economy. The transformerless inverter (TLI) topologies and its grid interface techniques are increasingly engrossed for the benefit of high efficiency, reliability, and low cost. The main concern in the TL inverters is common mode voltage (CMV), which causes the switching-frequency leakage current, grid interface concerns and exaggerates the EMI problems. The single-phase inverter two-level topologies are well developed with additional switches and components for eliminating the CMV. Multilevel inverters (MLIs) based grid connected transformerless inverter topology is being researched to avail additional benefits from MLI, even through that are trust topologies presented in the literature. With the above aim, this paper has proposed three -phase three-level T type NP-MLI (TNP-MLI) topology with transformerless PV grid connected proficiency. The CM leakage current should handle over mitigating CMV through removing unwanted switching events in the inverter pulse width modulation (PWM). This paper is proposes PV connected T type NP-MLI interface with three-phase grid connected system with the help of improved space vector modulation (SVM) technique to mitigate the CM leakage current to overcome the above said requests on the PV tied TL grid connected system. This proposed the SVM technique to mitigate the CM leakage current by selecting only mediums, and zero vectors with suitable current control method in order to maintain the inverter current and grid interface requirements. The proposed PV tied TNP-MLI offering higher efficiency, lower breakdown voltage on the devices, smaller THD of output voltage, good reliability, and long life span. The paper also investigated the CM leakage currents envisage and behavior for the three-phase MLI through the inverter switching function, which is not discussed before. The proposed SVM on TL-TNP-MLI offers the reliable PV grid interface with very low switching-frequency leakage current (200mA) for all the PV and inverter operation conditions. The feasibility and effectiveness of the TLI and its control strategy is confirmed through the MATLAB/Simulink simulation model directly as compared with 2kW roof top PV plant connected TL-TNP-MLI experimentation, showing good accordance with theoretical investigation. The simulation and experimental results are demonstrated and presented in the good stability of steady state and dynamics performances. The proposed inverter reduces the cost of grid interface transformer, harmonics filter, and CMV suppressions choke.

Suggested Citation

  • P. Madasamy & V. Suresh Kumar & P. Sanjeevikumar & Jens Bo Holm-Nielsen & Eklas Hosain & C. Bharatiraja, 2019. "A Three-Phase Transformerless T-Type- NPC-MLI for Grid Connected PV Systems with Common-Mode Leakage Current Mitigation," Energies, MDPI, vol. 12(12), pages 1-25, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2434-:d:242579
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/12/2434/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/12/2434/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuqi Wang & Qingshan Xu & Zhoujun Ma & Hong Zhu, 2017. "An Improved Control and Energy Management Strategy of Three-Level NPC Converter Based DC Distribution Network," Energies, MDPI, vol. 10(10), pages 1-19, October.
    2. Henrik Zsiborács & Nóra Hegedűsné Baranyai & András Vincze & István Háber & Gábor Pintér, 2018. "Economic and Technical Aspects of Flexible Storage Photovoltaic Systems in Europe," Energies, MDPI, vol. 11(6), pages 1-17, June.
    3. Jian Guo Lyu & Ji Dong Wang & Wen Bin Hu & Zhao Feng Wu, 2018. "Research on the Neutral-Point Voltage Balance for NPC Three-Level Inverters under Non-Ideal Grid Conditions," Energies, MDPI, vol. 11(6), pages 1-21, May.
    4. Hani Albalawi & Sherif Ahmed Zaid, 2018. "An H5 Transformerless Inverter for Grid Connected PV Systems with Improved Utilization Factor and a Simple Maximum Power Point Algorithm," Energies, MDPI, vol. 11(11), pages 1-17, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang-Hua Lin & Shoeb Azam Farooqui & Hwa-Dong Liu & Jian-Jang Huang & Mohd Fahad, 2023. "Finite Control Set Model Predictive Control (FCS-MPC) for Enhancing the Performance of a Single-Phase Inverter in a Renewable Energy System (RES)," Mathematics, MDPI, vol. 11(21), pages 1-24, November.
    2. Kui-Jun Lee, 2020. "Analytical Modeling of Neutral Point Current in T-type Three-level PWM Converter," Energies, MDPI, vol. 13(6), pages 1-11, March.
    3. P. Madasamy & R. K. Pongiannan & Sekar Ravichandran & Sanjeevikumar Padmanaban & Bharatiraja Chokkalingam & Eklas Hossain & Yusuff Adedayo, 2019. "A Simple Multilevel Space Vector Modulation Technique and MATLAB System Generator Built FPGA Implementation for Three-Level Neutral-Point Clamped Inverter," Energies, MDPI, vol. 12(22), pages 1-24, November.
    4. Adyr A. Estévez-Bén & Alfredo Alvarez-Diazcomas & Juvenal Rodríguez-Reséndiz, 2020. "Transformerless Multilevel Voltage-Source Inverter Topology Comparative Study for PV Systems," Energies, MDPI, vol. 13(12), pages 1-26, June.
    5. Tito G. Amaral & Vitor Fernão Pires & Armando Cordeiro & Daniel Foito & João F. Martins & Julia Yamnenko & Tetyana Tereschenko & Liudmyla Laikova & Ihor Fedin, 2023. "Incipient Fault Diagnosis of a Grid-Connected T-Type Multilevel Inverter Using Multilayer Perceptron and Walsh Transform," Energies, MDPI, vol. 16(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dimitar Bozalakov & Mohannad J. Mnati & Joannes Laveyne & Jan Desmet & Lieven Vandevelde, 2019. "Battery Storage Integration in Voltage Unbalance and Overvoltage Mitigation Control Strategies and Its Impact on the Power Quality," Energies, MDPI, vol. 12(8), pages 1-26, April.
    2. Iolanda Saviuc & Herbert Peremans & Steven Van Passel & Kevin Milis, 2019. "Economic Performance of Using Batteries in European Residential Microgrids under the Net-Metering Scheme," Energies, MDPI, vol. 12(1), pages 1-28, January.
    3. Mahdi Shahparasti & Pedro Catalán & Nurul Fazlin Roslan & Joan Rocabert & Raúl-Santiago Muñoz-Aguilar & Alvaro Luna, 2018. "Enhanced Control for Improving the Operation of Grid-Connected Power Converters under Faulty and Saturated Conditions," Energies, MDPI, vol. 11(3), pages 1-21, February.
    4. Milad Zeraatpisheh & Reza Arababadi & Mohsen Saffari Pour, 2018. "Economic Analysis for Residential Solar PV Systems Based on Different Demand Charge Tariffs," Energies, MDPI, vol. 11(12), pages 1-19, November.
    5. Jan Iwaszkiewicz & Piotr Mysiak, 2019. "Supply System for Three-Level Inverters Using Multi-Pulse Rectifiers with Coupled Reactors," Energies, MDPI, vol. 12(17), pages 1-23, September.
    6. Xiangwu Yan & Jiajia Li & Ling Wang & Shuaishuai Zhao & Tie Li & Zhipeng Lv & Ming Wu, 2018. "Adaptive-MPPT-Based Control of Improved Photovoltaic Virtual Synchronous Generators," Energies, MDPI, vol. 11(7), pages 1-18, July.
    7. Ventosa-Cutillas, Antonio & Montero-Robina, Pablo & Cuesta, Federico & Gordillo, Francisco, 2020. "A simple modulation approach for interfacing three-level Neutral-Point-Clamped converters to the grid," Energy, Elsevier, vol. 205(C).
    8. Alberto Bocca & Luca Bergamasco & Matteo Fasano & Lorenzo Bottaccioli & Eliodoro Chiavazzo & Alberto Macii & Pietro Asinari, 2018. "Multiple-Regression Method for Fast Estimation of Solar Irradiation and Photovoltaic Energy Potentials over Europe and Africa," Energies, MDPI, vol. 11(12), pages 1-17, December.
    9. Yang Du & Ke Yan & Zixiao Ren & Weidong Xiao, 2018. "Designing Localized MPPT for PV Systems Using Fuzzy-Weighted Extreme Learning Machine," Energies, MDPI, vol. 11(10), pages 1-10, October.
    10. Moath Alsafasfeh & Ikhlas Abdel-Qader & Bradley Bazuin & Qais Alsafasfeh & Wencong Su, 2018. "Unsupervised Fault Detection and Analysis for Large Photovoltaic Systems Using Drones and Machine Vision," Energies, MDPI, vol. 11(9), pages 1-18, August.
    11. Hyunji Lee & Katherine A. Kim, 2018. "Design Considerations for Parallel Differential Power Processing Converters in a Photovoltaic-Powered Wearable Application," Energies, MDPI, vol. 11(12), pages 1-17, November.
    12. Xiaoyang Song & Yaohuan Huang & Chuanpeng Zhao & Yuxin Liu & Yanguo Lu & Yongguo Chang & Jie Yang, 2018. "An Approach for Estimating Solar Photovoltaic Potential Based on Rooftop Retrieval from Remote Sensing Images," Energies, MDPI, vol. 11(11), pages 1-14, November.
    13. S. Tamilselvi & S. Gunasundari & N. Karuppiah & Abdul Razak RK & S. Madhusudan & Vikas Madhav Nagarajan & T. Sathish & Mohammed Zubair M. Shamim & C. Ahamed Saleel & Asif Afzal, 2021. "A Review on Battery Modelling Techniques," Sustainability, MDPI, vol. 13(18), pages 1-26, September.
    14. Henrik Zsiborács & András Vincze & Gábor Pintér & Nóra Hegedűsné Baranyai, 2023. "A Comparative Examination of the Electricity Saving Potentials of Direct Residential PV Energy Use in European Countries," Sustainability, MDPI, vol. 15(8), pages 1-19, April.
    15. Anna Wojewnik-Filipkowska & Paweł Filipkowski & Olaf Frąckowiak, 2023. "Analysis of Investments in RES Based on the Example of Photovoltaic Panels in Conditions of Uncertainty and Risk—A Case Study," Energies, MDPI, vol. 16(7), pages 1-15, March.
    16. Liu, Jicheng & Lu, Yunyuan, 2023. "A task matching model of photovoltaic storage system under the energy blockchain environment - based on GA-CLOUD-GS algorithm," Energy, Elsevier, vol. 283(C).
    17. Jichun Liu & Zhengbo Chen & Yue Xiang, 2019. "Exploring Economic Criteria for Energy Storage System Sizing," Energies, MDPI, vol. 12(12), pages 1-17, June.
    18. Aditi Atul Desai & Suresh Mikkili & Tomonobu Senjyu, 2022. "Novel H6 Transformerless Inverter for Grid Connected Photovoltaic System to Reduce the Conduction Loss and Enhance Efficiency," Energies, MDPI, vol. 15(10), pages 1-22, May.
    19. Maria Simona Răboacă & Gheorghe Badea & Adrian Enache & Constantin Filote & Gabriel Răsoi & Mihai Rata & Alexandru Lavric & Raluca-Andreea Felseghi, 2019. "Concentrating Solar Power Technologies," Energies, MDPI, vol. 12(6), pages 1-17, March.
    20. Jack Flicker & Jay Johnson & Peter Hacke & Ramanathan Thiagarajan, 2022. "Automating Component-Level Stress Measurements for Inverter Reliability Estimation," Energies, MDPI, vol. 15(13), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:12:p:2434-:d:242579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.