IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3132-d182371.html
   My bibliography  Save this article

Improvement of Tubular Permanent Magnet Machine Performance Using Dual-Segment Halbach Array

Author

Listed:
  • Minh-Trung Duong

    (Energy and Power Conversion Engineering, University of Science and Technology, Daejeon 34113, Korea
    Electric Motor Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Korea)

  • Yon-Do Chun

    (Energy and Power Conversion Engineering, University of Science and Technology, Daejeon 34113, Korea
    Electric Motor Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Korea)

  • Deok-Je Bang

    (Electric Motor Research Center, Korea Electrotechnology Research Institute, Changwon 51543, Korea)

Abstract

In this paper, a modification of the dual-segment permanent magnet (PM) Halbach array is investigated to improve the performance of the tubular linear machine, in terms of flux density and output power. Instead of a classical Halbach array with only radial and axial PMs, the proposed model involves the insertion of mig-magnets, which have a magnetized angle shifted from the reference magnetized angles of axial and radial PMs. This structure leads to the elimination of flux leakage and the concentration of flux linkage in middle of the coil; therefore, the output power is increased by 13.2%.

Suggested Citation

  • Minh-Trung Duong & Yon-Do Chun & Deok-Je Bang, 2018. "Improvement of Tubular Permanent Magnet Machine Performance Using Dual-Segment Halbach Array," Energies, MDPI, vol. 11(11), pages 1-10, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3132-:d:182371
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3132/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3132/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    2. Tao Xia & Haitao Yu & Zhenchuan Shi & Rong Guo, 2018. "Comparative Analysis and Experimental Verification of a Linear Tubular Generator for Wave Energy Conversion," Energies, MDPI, vol. 11(7), pages 1-16, July.
    3. Ran Zhang & Xu Wang & Sabu John, 2018. "A Comprehensive Review of the Techniques on Regenerative Shock Absorber Systems," Energies, MDPI, vol. 11(5), pages 1-43, May.
    4. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & Elagouz, Ahmed & Mi, Jia & Guo, Sijing & Liu, Yilun & Zuo, Lei, 2018. "Vibration energy harvesting in automotive suspension system: A detailed review," Applied Energy, Elsevier, vol. 229(C), pages 672-699.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mitsuhide Sato & Takumi Goto & Jianping Zheng & Shoma Irie, 2020. "Resonant Combustion Start Considering Potential Energy of Free-Piston Engine Generator," Energies, MDPI, vol. 13(21), pages 1-17, November.
    2. Minh-Trung Duong & Yon-Do Chun & Do-Kwan Hong, 2018. "Design of a High-Performance 16-Slot 8-Pole Electromagnetic Shock Absorber Using a Novel Permanent Magnet Structure," Energies, MDPI, vol. 11(12), pages 1-12, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doaa Al-Yafeai & Tariq Darabseh & Abdel-Hamid I. Mourad, 2020. "A State-Of-The-Art Review of Car Suspension-Based Piezoelectric Energy Harvesting Systems," Energies, MDPI, vol. 13(9), pages 1-39, May.
    2. Lincoln Bowen & Jordi Vinolas & José Luis Olazagoitia, 2019. "Design and Potential Power Recovery of Two Types of Energy Harvesting Shock Absorbers," Energies, MDPI, vol. 12(24), pages 1-19, December.
    3. Jinkyu Lee & Yondo Chun & Jiwon Kim & Byounggun Park, 2021. "An Energy-Harvesting System Using MPPT at Shock Absorber for Electric Vehicles," Energies, MDPI, vol. 14(9), pages 1-14, April.
    4. Bai, Shengxi & Liu, Chunhua, 2021. "Overview of energy harvesting and emission reduction technologies in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    5. Minh-Trung Duong & Yon-Do Chun & Do-Kwan Hong, 2018. "Design of a High-Performance 16-Slot 8-Pole Electromagnetic Shock Absorber Using a Novel Permanent Magnet Structure," Energies, MDPI, vol. 11(12), pages 1-12, November.
    6. Yu, Wei & Wang, Ruochen, 2019. "Development and performance evaluation of a comprehensive automotive energy recovery system with a refined energy management strategy," Energy, Elsevier, vol. 189(C).
    7. Abdelkareem, Mohamed A.A. & Zhang, Ran & Jing, Xingjian & Wang, Xu & Ali, Mohamed Kamal Ahmed, 2022. "Characterization and implementation of a double-sided arm-toothed indirect-drive rotary electromagnetic energy-harvesting shock absorber in a full semi-trailer truck suspension platform," Energy, Elsevier, vol. 239(PA).
    8. Lafarge, Barbara & Grondel, Sébastien & Delebarre, Christophe & Curea, Octavian & Richard, Claude, 2021. "Linear electromagnetic energy harvester system embedded on a vehicle suspension: From modeling to performance analysis," Energy, Elsevier, vol. 225(C).
    9. Mehdi Neshat & Nataliia Y. Sergiienko & Erfan Amini & Meysam Majidi Nezhad & Davide Astiaso Garcia & Bradley Alexander & Markus Wagner, 2020. "A New Bi-Level Optimisation Framework for Optimising a Multi-Mode Wave Energy Converter Design: A Case Study for the Marettimo Island, Mediterranean Sea," Energies, MDPI, vol. 13(20), pages 1-23, October.
    10. Tunde Aderinto & Hua Li, 2020. "Effect of Spatial and Temporal Resolution Data on Design and Power Capture of a Heaving Point Absorber," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    11. Licheri, Fabio & Ghisu, Tiziano & Cambuli, Francesco & Puddu, Pierpaolo, 2022. "Detailed investigation of the local flow-field in a Wells turbine coupled to an OWC simulator," Renewable Energy, Elsevier, vol. 197(C), pages 583-593.
    12. Abdelkareem, Mohamed A.A. & Xu, Lin & Ali, Mohamed Kamal Ahmed & El-Daly, Abdel-Rahman B.M. & Hassan, Mohamed A. & Elagouz, Ahmed & Bo, Yang, 2019. "Analysis of the prospective vibrational energy harvesting of heavy-duty truck suspensions: A simulation approach," Energy, Elsevier, vol. 173(C), pages 332-351.
    13. Luo, Rongkang & Yu, Zhihao & Wu, Peibao & Hou, Zhichao, 2023. "Analytical solutions of the energy harvesting potential from vehicle vertical vibration based on statistical energy conservation," Energy, Elsevier, vol. 264(C).
    14. Li, Jian & Zuo, Zhengxing & Jia, Boru & Feng, Huihua & Mei, Bingang & Smallbone, Andrew & Roskilly, Anthony Paul, 2024. "Operating characteristics and design parameter optimization of permanent magnet linear generator applied to free-piston energy converter," Energy, Elsevier, vol. 287(C).
    15. Pan, Yu & Liu, Fengwei & Jiang, Ruijin & Tu, Zhiwen & Zuo, Lei, 2019. "Modeling and onboard test of an electromagnetic energy harvester for railway cars," Applied Energy, Elsevier, vol. 250(C), pages 568-581.
    16. José Carlos Ugaz Peña & Christian Luis Medina Rodríguez & Gustavo O. Guarniz Avalos, 2023. "Study of a New Wave Energy Converter with Perturb and Observe Maximum Power Point Tracking Method," Sustainability, MDPI, vol. 15(13), pages 1-18, July.
    17. Li, Hai & Zheng, Peng & Zhang, Tingsheng & Zou, Yingquan & Pan, Yajia & Zhang, Zutao & Azam, Ali, 2021. "A high-efficiency energy regenerative shock absorber for powering auxiliary devices of new energy driverless buses," Applied Energy, Elsevier, vol. 295(C).
    18. Adriano Silva Bastos & Tâmara Rita Costa de Souza & Dieimys Santos Ribeiro & Mirian de Lourdes Noronha Motta Melo & Carlos Barreira Martinez, 2023. "Wave Energy Generation in Brazil: A Georeferenced Oscillating Water Column Inventory," Energies, MDPI, vol. 16(8), pages 1-24, April.
    19. Freeman, Mikaela C. & O'Neil, Rebecca & Garavelli, Lysel & Hellin, Dan & Klure, Justin, 2022. "Case study on the novel permitting and authorization of PacWave South, a US grid-connected wave energy test facility: Development, challenges, and insights," Energy Policy, Elsevier, vol. 168(C).
    20. Butera, Giacomo & Jensen, Søren Højgaard & Clausen, Lasse Røngaard, 2019. "A novel system for large-scale storage of electricity as synthetic natural gas using reversible pressurized solid oxide cells," Energy, Elsevier, vol. 166(C), pages 738-754.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3132-:d:182371. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.