IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v407y2000i6803d10.1038_35035045.html
   My bibliography  Save this article

Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries

Author

Listed:
  • P. Poizot

    (Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UPRES A 6007)

  • S. Laruelle

    (Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UPRES A 6007)

  • S. Grugeon

    (Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UPRES A 6007)

  • L. Dupont

    (Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UPRES A 6007)

  • J-M. Tarascon

    (Laboratoire de Réactivité et Chimie des Solides, Université de Picardie Jules Verne, CNRS UPRES A 6007)

Abstract

Rechargeable solid-state batteries have long been considered an attractive power source for a wide variety of applications, and in particular, lithium-ion batteries are emerging as the technology of choice for portable electronics. One of the main challenges in the design of these batteries is to ensure that the electrodes maintain their integrity over many discharge–recharge cycles. Although promising electrode systems have recently been proposed1,2,3,4,5,6,7, their lifespans are limited by Li-alloying agglomeration8 or the growth of passivation layers9, which prevent the fully reversible insertion of Li ions into the negative electrodes. Here we report that electrodes made of nanoparticles of transition-metal oxides (MO, where M is Co, Ni, Cu or Fe) demonstrate electrochemical capacities of 700 mA h g-1, with 100% capacity retention for up to 100 cycles and high recharging rates. The mechanism of Li reactivity differs from the classical Li insertion/deinsertion or Li-alloying processes, and involves the formation and decomposition of Li2O, accompanying the reduction and oxidation of metal nanoparticles (in the range 1–5 nanometres) respectively. We expect that the use of transition-metal nanoparticles to enhance surface electrochemical reactivity will lead to further improvements in the performance of lithium-ion batteries.

Suggested Citation

  • P. Poizot & S. Laruelle & S. Grugeon & L. Dupont & J-M. Tarascon, 2000. "Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries," Nature, Nature, vol. 407(6803), pages 496-499, September.
  • Handle: RePEc:nat:nature:v:407:y:2000:i:6803:d:10.1038_35035045
    DOI: 10.1038/35035045
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35035045
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35035045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Golmohammadzadeh, Rabeeh & Faraji, Fariborz & Jong, Brian & Pozo-Gonzalo, Cristina & Banerjee, Parama Chakraborty, 2022. "Current challenges and future opportunities toward recycling of spent lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Wang, Bin & Wang, Shifeng & Tang, Yuanyuan & Tsang, Chi-Wing & Dai, Jinchuan & Leung, Michael K.H. & Lu, Xiao-Ying, 2019. "Micro/nanostructured MnCo2O4.5 anodes with high reversible capacity and excellent rate capability for next generation lithium-ion batteries," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Jiang, Z.Y. & Qu, Z.G., 2019. "Lithium–ion battery thermal management using heat pipe and phase change material during discharge–charge cycle: A comprehensive numerical study," Applied Energy, Elsevier, vol. 242(C), pages 378-392.
    4. Taegyune Yoon & Jaegyeong Kim & Jinku Kim & Jung Kyoo Lee, 2013. "Electrostatic Self-Assembly of Fe 3 O 4 Nanoparticles on Graphene Oxides for High Capacity Lithium-Ion Battery Anodes," Energies, MDPI, vol. 6(9), pages 1-11, September.
    5. Yang-Soo Kim & Yonghoon Cho & Paul M. Nogales & Soon-Ki Jeong, 2019. "NbO 2 as a Noble Zero-Strain Material for Li-Ion Batteries: Electrochemical Redox Behavior in a Nonaqueous Solution," Energies, MDPI, vol. 12(15), pages 1-7, August.
    6. Seok Hee Lee & Sung Pil Woo & Nitul Kakati & Dong-Joo Kim & Young Soo Yoon, 2018. "A Comprehensive Review of Nanomaterials Developed Using Electrophoresis Process for High-Efficiency Energy Conversion and Storage Systems," Energies, MDPI, vol. 11(11), pages 1-81, November.
    7. Hongyan Gao & Shuai Liu & Yafei Li & Eric Conte & Yan Cao, 2017. "A Critical Review of Spinel Structured Iron Cobalt Oxides Based Materials for Electrochemical Energy Storage and Conversion," Energies, MDPI, vol. 10(11), pages 1-21, November.
    8. Kwang Hee Kim & Myung-Jin Lee & Minje Ryu & Tae-Kyung Liu & Jung Hwan Lee & Changhoon Jung & Ju-Sik Kim & Jong Hyeok Park, 2024. "Near-strain-free anode architecture enabled by interfacial diffusion creep for initial-anode-free quasi-solid-state batteries," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    9. Seng, Kuok Hau & Li, Li & Chen, Da-Peng & Chen, Zhi Xin & Wang, Xiao-Lin & Liu, Hua Kun & Guo, Zai Ping, 2013. "The effects of FEC (fluoroethylene carbonate) electrolyte additive on the lithium storage properties of NiO (nickel oxide) nanocuboids," Energy, Elsevier, vol. 58(C), pages 707-713.
    10. Alami, Abdul Hai & Allagui, Anis & Alawadhi, Hussain, 2015. "Synthesis and optical properties of electrodeposited crystalline Cu2O in the Vis–NIR range for solar selective absorbers," Renewable Energy, Elsevier, vol. 82(C), pages 21-25.
    11. Yiseul Park & Misol Oh & Jae Hyun Kim, 2019. "Well-Dispersed ZnFe 2 O 4 Nanoparticles onto Graphene as Superior Anode Materials for Lithium Ion Batteries," Energies, MDPI, vol. 12(2), pages 1-10, January.
    12. Mao-Chia Huang & Cheng-Hsien Yang & Chien-Chih Chiang & Sheng-Cheng Chiu & Yun-Feng Chen & Cong-You Lin & Lu-Yu Wang & Yen-Liang Li & Chang-Chung Yang & Wen-Sheng Chang, 2018. "Influence of High Loading on the Performance of Natural Graphite-Based Al Secondary Batteries," Energies, MDPI, vol. 11(10), pages 1-12, October.
    13. Yang, Yang & Yuan, Wei & Zhang, Xiaoqing & Wang, Chun & Yuan, Yuhang & Huang, Yao & Ye, Yintong & Qiu, Zhiqiang & Tang, Yong, 2020. "A review on FexOy-based materials for advanced lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    14. Kai Wang & Weibo Hua & Xiaohui Huang & David Stenzel & Junbo Wang & Ziming Ding & Yanyan Cui & Qingsong Wang & Helmut Ehrenberg & Ben Breitung & Christian Kübel & Xiaoke Mu, 2023. "Synergy of cations in high entropy oxide lithium ion battery anode," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Liu, Qin & Zhu, Jinghui & Zhang, Liwen & Qiu, Yejun, 2018. "Recent advances in energy materials by electrospinning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1825-1858.
    16. Alnarabiji, Mohamad Sahban & Tantawi, Omar & Ramli, Anita & Mohd Zabidi, Noor Asmawati & Ghanem, Ouahid Ben & Abdullah, Bawadi, 2019. "Comprehensive review of structured binary Ni-NiO catalyst: Synthesis, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    17. Sharma, Dipika & Upadhyay, Rishibrind Kumar & Satpati, Biswarup & Satsangi, Vibha R. & Shrivastav, Rohit & Waghmare, Umesh V. & Dass, Sahab, 2017. "Electronic band-offsets across Cu2O/BaZrO3 heterojunction and its stable photo-electro-chemical response: First-principles theoretical analysis and experimental optimization," Renewable Energy, Elsevier, vol. 113(C), pages 503-511.
    18. Cauda, Valentina & Pugliese, Diego & Garino, Nadia & Sacco, Adriano & Bianco, Stefano & Bella, Federico & Lamberti, Andrea & Gerbaldi, Claudio, 2014. "Multi-functional energy conversion and storage electrodes using flower-like Zinc oxide nanostructures," Energy, Elsevier, vol. 65(C), pages 639-646.
    19. Dohyeong Seok & Yohan Jeong & Kyoungho Han & Do Young Yoon & Hiesang Sohn, 2019. "Recent Progress of Electrochemical Energy Devices: Metal Oxide–Carbon Nanocomposites as Materials for Next-Generation Chemical Storage for Renewable Energy," Sustainability, MDPI, vol. 11(13), pages 1-34, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:407:y:2000:i:6803:d:10.1038_35035045. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.