IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p2948-d178979.html
   My bibliography  Save this article

Comprehensive Aging Analysis of Volumetric Constrained Lithium-Ion Pouch Cells with High Concentration Silicon-Alloy Anodes

Author

Listed:
  • Lysander De Sutter

    (ETEC Department & MOBI Research Group, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium—VUB-MOBI is a Core Lab Member of Flanders Make)

  • Gert Berckmans

    (ETEC Department & MOBI Research Group, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium—VUB-MOBI is a Core Lab Member of Flanders Make)

  • Mario Marinaro

    (ZSW, Zentrum für Sonnenenergie- und Wasserstoff-Forschung BW, Helmholtzstraße 8, 89081 Ulm, Germany)

  • Jelle Smekens

    (ETEC Department & MOBI Research Group, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium—VUB-MOBI is a Core Lab Member of Flanders Make)

  • Yousef Firouz

    (ETEC Department & MOBI Research Group, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium—VUB-MOBI is a Core Lab Member of Flanders Make)

  • Margret Wohlfahrt-Mehrens

    (ZSW, Zentrum für Sonnenenergie- und Wasserstoff-Forschung BW, Helmholtzstraße 8, 89081 Ulm, Germany)

  • Joeri Van Mierlo

    (ETEC Department & MOBI Research Group, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium—VUB-MOBI is a Core Lab Member of Flanders Make)

  • Noshin Omar

    (ETEC Department & MOBI Research Group, Vrije Universiteit Brussel (VUB), Pleinlaan 2, 1050 Brussel, Belgium—VUB-MOBI is a Core Lab Member of Flanders Make)

Abstract

In this research, twenty-four high capacity (1360 mAh) NMC622/Si-alloy Li-ion full pouch cells with high silicon-alloy content (55%) are cycle aged under seven different cycling conditions to study the effect of different stressors on the cycle life of Si-anode full cells, among which are the effect of ambient temperature, Depth of Discharge (DoD) and the discharge current. The cells are volumetrically constrained at an optimal initial pressure to improve their cycle life, energy and power capabilities. Furthermore, the innovative test setup allows measuring the developed pressure as a result of repeated (de-)lithiation during battery cycling. This uniquely vast testing campaign on Si-anode full cells allows us to study and quantify independently the influence of different stress factors on their cycle life for the first time, as well as to develop a new capacity fade model based on an observed linear relationship between capacity retention and total discharge capacity throughput.

Suggested Citation

  • Lysander De Sutter & Gert Berckmans & Mario Marinaro & Jelle Smekens & Yousef Firouz & Margret Wohlfahrt-Mehrens & Joeri Van Mierlo & Noshin Omar, 2018. "Comprehensive Aging Analysis of Volumetric Constrained Lithium-Ion Pouch Cells with High Concentration Silicon-Alloy Anodes," Energies, MDPI, vol. 11(11), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2948-:d:178979
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/2948/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/2948/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jalkanen, K. & Karppinen, J. & Skogström, L. & Laurila, T. & Nisula, M. & Vuorilehto, K., 2015. "Cycle aging of commercial NMC/graphite pouch cells at different temperatures," Applied Energy, Elsevier, vol. 154(C), pages 160-172.
    2. de Hoog, Joris & Timmermans, Jean-Marc & Ioan-Stroe, Daniel & Swierczynski, Maciej & Jaguemont, Joris & Goutam, Shovon & Omar, Noshin & Van Mierlo, Joeri & Van Den Bossche, Peter, 2017. "Combined cycling and calendar capacity fade modeling of a Nickel-Manganese-Cobalt Oxide Cell with real-life profile validation," Applied Energy, Elsevier, vol. 200(C), pages 47-61.
    3. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    4. Dai, Haifeng & Yu, Chenchen & Wei, Xuezhe & Sun, Zechang, 2017. "State of charge estimation for lithium-ion pouch batteries based on stress measurement," Energy, Elsevier, vol. 129(C), pages 16-27.
    5. Ximing Cheng & Michael Pecht, 2017. "In Situ Stress Measurement Techniques on Li-ion Battery Electrodes: A Review," Energies, MDPI, vol. 10(5), pages 1-19, April.
    6. Omar, Noshin & Monem, Mohamed Abdel & Firouz, Yousef & Salminen, Justin & Smekens, Jelle & Hegazy, Omar & Gaulous, Hamid & Mulder, Grietus & Van den Bossche, Peter & Coosemans, Thierry & Van Mierlo, J, 2014. "Lithium iron phosphate based battery – Assessment of the aging parameters and development of cycle life model," Applied Energy, Elsevier, vol. 113(C), pages 1575-1585.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nickolay I. Shchurov & Sergey I. Dedov & Boris V. Malozyomov & Alexander A. Shtang & Nikita V. Martyushev & Roman V. Klyuev & Sergey N. Andriashin, 2021. "Degradation of Lithium-Ion Batteries in an Electric Transport Complex," Energies, MDPI, vol. 14(23), pages 1-33, December.
    2. Xingyu Zhang & Jian Chen & Yinhua Bao, 2022. "Model-Based Investigations of Porous Si-Based Anodes for Lithium-Ion Batteries with Effects of Volume Changes," Energies, MDPI, vol. 15(23), pages 1-18, November.
    3. Imanol Landa-Medrano & Idoia Urdampilleta & Iker Castrillo & Hans-Jürgen Grande & Iratxe de Meatza & Aitor Eguia-Barrio, 2024. "Making Room for Silicon: Including SiO x in a Graphite-Based Anode Formulation and Harmonization in 1 Ah Cells," Energies, MDPI, vol. 17(7), pages 1-21, March.
    4. Hyungeun Seo & Kyungbae Kim & Jae-Hun Kim, 2020. "Spherical Sb Core/Nb 2 O 5 -C Double-Shell Structured Composite as an Anode Material for Li Secondary Batteries," Energies, MDPI, vol. 13(8), pages 1-10, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khaleghi, Sahar & Karimi, Danial & Beheshti, S. Hamidreza & Hosen, Md. Sazzad & Behi, Hamidreza & Berecibar, Maitane & Van Mierlo, Joeri, 2021. "Online health diagnosis of lithium-ion batteries based on nonlinear autoregressive neural network," Applied Energy, Elsevier, vol. 282(PA).
    2. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Ma, Jian & Xu, Shu & Shang, Pengchao & ding, Yu & Qin, Weili & Cheng, Yujie & Lu, Chen & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou, 2020. "Cycle life test optimization for different Li-ion power battery formulations using a hybrid remaining-useful-life prediction method," Applied Energy, Elsevier, vol. 262(C).
    4. Han, Gaoce & Yan, Jize & Guo, Zhen & Greenwood, David & Marco, James & Yu, Yifei, 2021. "A review on various optical fibre sensing methods for batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    6. Jiang, Yihui & Xu, Jun & Liu, Mengmeng & Mei, Xuesong, 2022. "An electromechanical coupling model-based state of charge estimation method for lithium-ion pouch battery modules," Energy, Elsevier, vol. 259(C).
    7. Su, Laisuo & Zhang, Jianbo & Wang, Caijuan & Zhang, Yakun & Li, Zhe & Song, Yang & Jin, Ting & Ma, Zhao, 2016. "Identifying main factors of capacity fading in lithium ion cells using orthogonal design of experiments," Applied Energy, Elsevier, vol. 163(C), pages 201-210.
    8. Joris De Hoog & Joris Jaguemont & Mohamed Abdel-Monem & Peter Van Den Bossche & Joeri Van Mierlo & Noshin Omar, 2018. "Combining an Electrothermal and Impedance Aging Model to Investigate Thermal Degradation Caused by Fast Charging," Energies, MDPI, vol. 11(4), pages 1-15, March.
    9. Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    10. Ye-Rin Kim & Jae-Myeong Kim & Jae-Jung Jung & So-Yeon Kim & Jae-Hak Choi & Hyun-Goo Lee, 2021. "Comprehensive Design of DC Shipboard Power Systems for Pure Electric Propulsion Ship Based on Battery Energy Storage System," Energies, MDPI, vol. 14(17), pages 1-28, August.
    11. Guan, Ting & Sun, Shun & Gao, Yunzhi & Du, Chunyu & Zuo, Pengjian & Cui, Yingzhi & Zhang, Lingling & Yin, Geping, 2016. "The effect of elevated temperature on the accelerated aging of LiCoO2/mesocarbon microbeads batteries," Applied Energy, Elsevier, vol. 177(C), pages 1-10.
    12. Bian, Xiaolei & Liu, Longcheng & Yan, Jinying, 2019. "A model for state-of-health estimation of lithium ion batteries based on charging profiles," Energy, Elsevier, vol. 177(C), pages 57-65.
    13. Sahar Khaleghi & Yousef Firouz & Maitane Berecibar & Joeri Van Mierlo & Peter Van Den Bossche, 2020. "Ensemble Gradient Boosted Tree for SoH Estimation Based on Diagnostic Features," Energies, MDPI, vol. 13(5), pages 1-16, March.
    14. Ma, Jian & Shang, Pengchao & Zou, Xinyu & Ma, Ning & Ding, Yu & Sun, Jinwen & Cheng, Yujie & Tao, Laifa & Lu, Chen & Su, Yuzhuan & Chong, Jin & Jin, Haizu & Lin, Yongshou, 2021. "A hybrid transfer learning scheme for remaining useful life prediction and cycle life test optimization of different formulation Li-ion power batteries," Applied Energy, Elsevier, vol. 282(PA).
    15. Jiang, Yihui & Xu, Jun & Hou, Wenlong & Mei, Xuesong, 2021. "A stack pressure based equivalent mechanical model of lithium-ion pouch batteries," Energy, Elsevier, vol. 221(C).
    16. Muhammad Umair Ali & Muhammad Ahmad Kamran & Pandiyan Sathish Kumar & Himanshu & Sarvar Hussain Nengroo & Muhammad Adil Khan & Altaf Hussain & Hee-Je Kim, 2018. "An Online Data-Driven Model Identification and Adaptive State of Charge Estimation Approach for Lithium-ion-Batteries Using the Lagrange Multiplier Method," Energies, MDPI, vol. 11(11), pages 1-19, October.
    17. He, Qiang & Yang, Yang & Luo, Chang & Zhai, Jun & Luo, Ronghua & Fu, Chunyun, 2022. "Energy recovery strategy optimization of dual-motor drive electric vehicle based on braking safety and efficient recovery," Energy, Elsevier, vol. 248(C).
    18. Ren, Hongbin & Zhao, Yuzhuang & Chen, Sizhong & Wang, Taipeng, 2019. "Design and implementation of a battery management system with active charge balance based on the SOC and SOH online estimation," Energy, Elsevier, vol. 166(C), pages 908-917.
    19. Hao Sun & Bo Jiang & Heze You & Bojian Yang & Xueyuan Wang & Xuezhe Wei & Haifeng Dai, 2021. "Quantitative Analysis of Degradation Modes of Lithium-Ion Battery under Different Operating Conditions," Energies, MDPI, vol. 14(2), pages 1-19, January.
    20. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2948-:d:178979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.