IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i8p595-d74876.html
   My bibliography  Save this article

An Event-Based Resource Management Framework for Distributed Decision-Making in Decentralized Virtual Power Plants

Author

Listed:
  • Jianchao Zhang

    (Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand)

  • Boon-Chong Seet

    (Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand)

  • Tek Tjing Lie

    (Department of Electrical and Electronic Engineering, Auckland University of Technology, Auckland 1010, New Zealand)

Abstract

The Smart Grid incorporates advanced information and communication technologies (ICTs) in power systems, and is characterized by high penetration of distributed energy resources (DERs). Whether it is the nation-wide power grid or a single residential building, the energy management involves different types of resources that often depend on and influence each other. The concept of virtual power plant (VPP) has been proposed to represent the aggregation of energy resources in the electricity market, and distributed decision-making (DDM) plays a vital role in VPP due to its complex nature. This paper proposes a framework for managing different resource types of relevance to energy management for decentralized VPP. The framework views VPP as a hierarchical structure and abstracts energy consumption/generation as contractual resources, i.e., contractual offerings to curtail load/supply energy, from third party VPP participants for DDM. The proposed resource models, event-based approach to decision making, multi-agent system and ontology implementation of the framework are presented in detail. The effectiveness of the proposed framework is then demonstrated through an application to a simulated campus VPP with real building energy data.

Suggested Citation

  • Jianchao Zhang & Boon-Chong Seet & Tek Tjing Lie, 2016. "An Event-Based Resource Management Framework for Distributed Decision-Making in Decentralized Virtual Power Plants," Energies, MDPI, vol. 9(8), pages 1-19, July.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:595-:d:74876
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/8/595/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/8/595/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Su, Wencong & Huang, Alex Q., 2014. "A game theoretic framework for a next-generation retail electricity market with high penetration of distributed residential electricity suppliers," Applied Energy, Elsevier, vol. 119(C), pages 341-350.
    2. Hao Bai & Shihong Miao & Xiaohong Ran & Chang Ye, 2015. "Optimal Dispatch Strategy of a Virtual Power Plant Containing Battery Switch Stations in a Unified Electricity Market," Energies, MDPI, vol. 8(3), pages 1-22, March.
    3. Schneeweiss, Christoph, 2003. "Distributed decision making--a unified approach," European Journal of Operational Research, Elsevier, vol. 150(2), pages 237-252, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yajing Gao & Yanping Sun & Xiaodan Wang & Feifan Chen & Ali Ehsan & Hongmei Li & Hong Li, 2017. "Multi-Objective Optimized Aggregation of Demand Side Resources Based on a Self-organizing Map Clustering Algorithm Considering a Multi-Scenario Technique," Energies, MDPI, vol. 10(12), pages 1-20, December.
    2. Abouzar Estebsari & Luca Barbierato & Alireza Bahmanyar & Lorenzo Bottaccioli & Enrico Macii & Edoardo Patti, 2019. "A SGAM-Based Test Platform to Develop a Scheme for Wide Area Measurement-Free Monitoring of Smart Grids under High PV Penetration," Energies, MDPI, vol. 12(8), pages 1-27, April.
    3. Liwei Ju & Peng Li & Qinliang Tan & Zhongfu Tan & GejiriFu De, 2018. "A CVaR-Robust Risk Aversion Scheduling Model for Virtual Power Plants Connected with Wind-Photovoltaic-Hydropower-Energy Storage Systems, Conventional Gas Turbines and Incentive-Based Demand Responses," Energies, MDPI, vol. 11(11), pages 1-28, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yiqi Dong & Zuoji Dong, 2023. "Bibliometric Analysis of Game Theory on Energy and Natural Resource," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    2. Bas Kolen & Matthijs Kok & Ira Helsloot & Bob Maaskant, 2013. "EvacuAid: A Probabilistic Model to Determine the Expected Loss of Life for Different Mass Evacuation Strategies During Flood Threats," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1312-1333, July.
    3. Tang, Rui & Li, Hangxin & Wang, Shengwei, 2019. "A game theory-based decentralized control strategy for power demand management of building cluster using thermal mass and energy storage," Applied Energy, Elsevier, vol. 242(C), pages 809-820.
    4. Josue Campos do Prado & Wei Qiao & Liyan Qu & Julio Romero Agüero, 2019. "The Next-Generation Retail Electricity Market in the Context of Distributed Energy Resources: Vision and Integrating Framework," Energies, MDPI, vol. 12(3), pages 1-24, February.
    5. Bielza, Concha & Gómez, Manuel & Shenoy, Prakash P., 2011. "A review of representation issues and modeling challenges with influence diagrams," Omega, Elsevier, vol. 39(3), pages 227-241, June.
    6. Raji Atia & Noboru Yamada, 2016. "Distributed Renewable Generation and Storage System Sizing Based on Smart Dispatch of Microgrids," Energies, MDPI, vol. 9(3), pages 1-16, March.
    7. Wang, Ge & Zhang, Qi & Li, Hailong & McLellan, Benjamin C. & Chen, Siyuan & Li, Yan & Tian, Yulu, 2017. "Study on the promotion impact of demand response on distributed PV penetration by using non-cooperative game theoretical analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1869-1878.
    8. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    9. Bianchi-Aguiar, Teresa & Hübner, Alexander & Carravilla, Maria Antónia & Oliveira, José Fernando, 2021. "Retail shelf space planning problems: A comprehensive review and classification framework," European Journal of Operational Research, Elsevier, vol. 289(1), pages 1-16.
    10. Gabriella Ferruzzi & Giorgio Graditi & Federico Rossi, 2020. "A joint approach for strategic bidding of a microgrid in energy and spinning reserve markets," Energy & Environment, , vol. 31(1), pages 88-115, February.
    11. Bhatti, Bilal Ahmad & Broadwater, Robert, 2019. "Energy trading in the distribution system using a non-model based game theoretic approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2017. "Benefit allocation for distributed energy network participants applying game theory based solutions," Energy, Elsevier, vol. 119(C), pages 384-391.
    13. Bouchard, M. & D’Amours, S. & Rönnqvist, M. & Azouzi, R. & Gunn, E., 2017. "Integrated optimization of strategic and tactical planning decisions in forestry," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1132-1143.
    14. Yuewen Jiang & Meisen Chen & Shi You, 2017. "A Unified Trading Model Based on Robust Optimization for Day-Ahead and Real-Time Markets with Wind Power Integration," Energies, MDPI, vol. 10(4), pages 1-19, April.
    15. Akhil Joseph & Patil Balachandra, 2020. "Energy Internet, the Future Electricity System: Overview, Concept, Model Structure, and Mechanism," Energies, MDPI, vol. 13(16), pages 1-26, August.
    16. Jalali, Mohammad Majid & Kazemi, Ahad, 2015. "Demand side management in a smart grid with multiple electricity suppliers," Energy, Elsevier, vol. 81(C), pages 766-776.
    17. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing & Lao, Changshi, 2017. "Profit allocation analysis among the distributed energy network participants based on Game-theory," Energy, Elsevier, vol. 118(C), pages 783-794.
    18. Wang, Lu, 2014. "Distributed Decision Making in der OP-Planung im Krankenhaus," Bayreuth Reports on Information Systems Management 58, University of Bayreuth, Chair of Information Systems Management.
    19. Andrew Henry & Christian Wernz, 2015. "A multiscale decision theory analysis for revenue sharing in three-stage supply chains," Annals of Operations Research, Springer, vol. 226(1), pages 277-300, March.
    20. Jelena Lukić & Miloš Radenković & Marijana Despotović-Zrakić & Aleksandra Labus & Zorica Bogdanović, 2017. "Supply chain intelligence for electricity markets: A smart grid perspective," Information Systems Frontiers, Springer, vol. 19(1), pages 91-107, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:8:p:595-:d:74876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.