IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2634-d173376.html
   My bibliography  Save this article

Optimal Operation Modes of Virtual Power Plants Based on Typical Scenarios Considering Output Evaluation Criteria

Author

Listed:
  • Jingjing Luo

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Baoding 071003, China)

  • Yajing Gao

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Baoding 071003, China)

  • Wenhai Yang

    (HUANENG Power International, Inc., Beijing 100031, China)

  • Yongchun Yang

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Baoding 071003, China)

  • Zheng Zhao

    (State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Baoding 071003, China)

  • Shiyu Tian

    (State Nuclear Electric Power Planning Design & Research Institute Co., Ltd., Beijing 100095, China)

Abstract

Stimulated by the severe energy crisis and the increasing awareness about the need for environmental protection, the efficient use of renewable energy has become a hot topic. The virtual power plant (VPP) is an effective way of integrating distributed energy systems (DES) by effectively deploying them in power grid dispatching or electricity trading. In this paper, the operating mode of the VPP with penetration of wind power, solar power and energy storage is investigated. Firstly, the grid-connection requirements of VPP according to the current wind and solar photovoltaic (PV) grid-connection requirements, and analyzed its profitability are examined. Secondly, under several typical scenarios grouped by a self-organization map (SOM) clustering algorithm using the VPP’s output data, a profit optimization model is established as a guideline for the VPP’s optimal operation. Based on this model, case studies are performed and the results indicate that this model is both feasible and effective.

Suggested Citation

  • Jingjing Luo & Yajing Gao & Wenhai Yang & Yongchun Yang & Zheng Zhao & Shiyu Tian, 2018. "Optimal Operation Modes of Virtual Power Plants Based on Typical Scenarios Considering Output Evaluation Criteria," Energies, MDPI, vol. 11(10), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2634-:d:173376
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2634/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2634/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zamani, Ali Ghahgharaee & Zakariazadeh, Alireza & Jadid, Shahram, 2016. "Day-ahead resource scheduling of a renewable energy based virtual power plant," Applied Energy, Elsevier, vol. 169(C), pages 324-340.
    2. Fang, Xinli & Yang, Qiang & Wang, Jianhui & Yan, Wenjun, 2016. "Coordinated dispatch in multiple cooperative autonomous islanded microgrids," Applied Energy, Elsevier, vol. 162(C), pages 40-48.
    3. Nosratabadi, Seyyed Mostafa & Hooshmand, Rahmat-Allah & Gholipour, Eskandar, 2016. "Stochastic profit-based scheduling of industrial virtual power plant using the best demand response strategy," Applied Energy, Elsevier, vol. 164(C), pages 590-606.
    4. Morvaj, Boran & Evins, Ralph & Carmeliet, Jan, 2017. "Decarbonizing the electricity grid: The impact on urban energy systems, distribution grids and district heating potential," Applied Energy, Elsevier, vol. 191(C), pages 125-140.
    5. Shayegan-Rad, Ali & Badri, Ali & Zangeneh, Ali, 2017. "Day-ahead scheduling of virtual power plant in joint energy and regulation reserve markets under uncertainties," Energy, Elsevier, vol. 121(C), pages 114-125.
    6. Ju, Liwei & Tan, Zhongfu & Yuan, Jinyun & Tan, Qingkun & Li, Huanhuan & Dong, Fugui, 2016. "A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind–photovoltaic–energy storage system considering the uncertainty and demand response," Applied Energy, Elsevier, vol. 171(C), pages 184-199.
    7. Asif, M. & Muneer, T., 2007. "Energy supply, its demand and security issues for developed and emerging economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1388-1413, September.
    8. Robu, Valentin & Chalkiadakis, Georgios & Kota, Ramachandra & Rogers, Alex & Jennings, Nicholas R., 2016. "Rewarding cooperative virtual power plant formation using scoring rules," Energy, Elsevier, vol. 117(P1), pages 19-28.
    9. Perera, A.T.D. & Coccolo, Silvia & Scartezzini, Jean-Louis & Mauree, Dasaraden, 2018. "Quantifying the impact of urban climate by extending the boundaries of urban energy system modeling," Applied Energy, Elsevier, vol. 222(C), pages 847-860.
    10. Jun Xie & Chi Cao, 2017. "Non-Convex Economic Dispatch of a Virtual Power Plant via a Distributed Randomized Gradient-Free Algorithm," Energies, MDPI, vol. 10(7), pages 1-12, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guoqiang Sun & Weihang Qian & Wenjin Huang & Zheng Xu & Zhongxing Fu & Zhinong Wei & Sheng Chen, 2019. "Stochastic Adaptive Robust Dispatch for Virtual Power Plants Using the Binding Scenario Identification Approach," Energies, MDPI, vol. 12(10), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Mohammadi Roozbehani & Ehsan Heydarian-Forushani & Saeed Hasanzadeh & Seifeddine Ben Elghali, 2022. "Virtual Power Plant Operational Strategies: Models, Markets, Optimization, Challenges, and Opportunities," Sustainability, MDPI, vol. 14(19), pages 1-23, September.
    2. Naval, Natalia & Yusta, Jose M., 2021. "Virtual power plant models and electricity markets - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    4. Liwei Ju & Peng Li & Qinliang Tan & Zhongfu Tan & GejiriFu De, 2018. "A CVaR-Robust Risk Aversion Scheduling Model for Virtual Power Plants Connected with Wind-Photovoltaic-Hydropower-Energy Storage Systems, Conventional Gas Turbines and Incentive-Based Demand Responses," Energies, MDPI, vol. 11(11), pages 1-28, October.
    5. Ju, Liwei & Zhao, Rui & Tan, Qinliang & Lu, Yan & Tan, Qingkun & Wang, Wei, 2019. "A multi-objective robust scheduling model and solution algorithm for a novel virtual power plant connected with power-to-gas and gas storage tank considering uncertainty and demand response," Applied Energy, Elsevier, vol. 250(C), pages 1336-1355.
    6. Yu, Songyuan & Fang, Fang & Liu, Yajuan & Liu, Jizhen, 2019. "Uncertainties of virtual power plant: Problems and countermeasures," Applied Energy, Elsevier, vol. 239(C), pages 454-470.
    7. Zhou, Yizhou & Wei, Zhinong & Sun, Guoqiang & Cheung, Kwok W. & Zang, Haixiang & Chen, Sheng, 2018. "A robust optimization approach for integrated community energy system in energy and ancillary service markets," Energy, Elsevier, vol. 148(C), pages 1-15.
    8. Pedro Faria & Zita Vale, 2019. "A Demand Response Approach to Scheduling Constrained Load Shifting," Energies, MDPI, vol. 12(9), pages 1-16, May.
    9. Amit Kumer Podder & Sayemul Islam & Nallapaneni Manoj Kumar & Aneesh A. Chand & Pulivarthi Nageswara Rao & Kushal A. Prasad & T. Logeswaran & Kabir A. Mamun, 2020. "Systematic Categorization of Optimization Strategies for Virtual Power Plants," Energies, MDPI, vol. 13(23), pages 1-46, November.
    10. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    11. Keon Baek & Woong Ko & Jinho Kim, 2019. "Optimal Scheduling of Distributed Energy Resources in Residential Building under the Demand Response Commitment Contract," Energies, MDPI, vol. 12(14), pages 1-19, July.
    12. Salkuti, Surender Reddy, 2019. "Day-ahead thermal and renewable power generation scheduling considering uncertainty," Renewable Energy, Elsevier, vol. 131(C), pages 956-965.
    13. Mohajeri, Nahid & Perera, A.T.D. & Coccolo, Silvia & Mosca, Lucas & Le Guen, Morgane & Scartezzini, Jean-Louis, 2019. "Integrating urban form and distributed energy systems: Assessment of sustainable development scenarios for a Swiss village to 2050," Renewable Energy, Elsevier, vol. 143(C), pages 810-826.
    14. Tong Xing & Hongyu Lin & Zhongfu Tan & Liwei Ju, 2019. "Coordinated Energy Management for Micro Energy Systems Considering Carbon Emissions Using Multi-Objective Optimization," Energies, MDPI, vol. 12(23), pages 1-27, November.
    15. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    16. Parhizkar, Tarannom & Mosleh, Ali & Roshandel, Ramin, 2017. "Aging based optimal scheduling framework for power plants using equivalent operating hour approach," Applied Energy, Elsevier, vol. 205(C), pages 1345-1363.
    17. Guoqiang Sun & Weihang Qian & Wenjin Huang & Zheng Xu & Zhongxing Fu & Zhinong Wei & Sheng Chen, 2019. "Stochastic Adaptive Robust Dispatch for Virtual Power Plants Using the Binding Scenario Identification Approach," Energies, MDPI, vol. 12(10), pages 1-23, May.
    18. Ju, Liwei & Yin, Zhe & Zhou, Qingqing & Li, Qiaochu & Wang, Peng & Tian, Wenxu & Li, Peng & Tan, Zhongfu, 2022. "Nearly-zero carbon optimal operation model and benefit allocation strategy for a novel virtual power plant using carbon capture, power-to-gas, and waste incineration power in rural areas," Applied Energy, Elsevier, vol. 310(C).
    19. Fattahi, Abbas & Nahavandi, Ali & Jokarzadeh, Mohammadreza, 2018. "A comprehensive reserve allocation method in a micro-grid considering renewable generation intermittency and demand side participation," Energy, Elsevier, vol. 155(C), pages 678-689.
    20. Arnaudo, Monica & Topel, Monika & Laumert, Björn, 2020. "Techno-economic analysis of demand side flexibility to enable the integration of distributed heat pumps within a Swedish neighborhood," Energy, Elsevier, vol. 195(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2634-:d:173376. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.