IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v147y2021ics1364032121005323.html
   My bibliography  Save this article

Effectiveness of demand response in achieving supply-demand matching in a renewables dominated electricity system: A modelling approach

Author

Listed:
  • Balasubramanian, S.
  • Balachandra, P.

Abstract

Globally, electricity systems are undergoing transitions from robust, carbon-intensive, and firm power conventional systems to uncertain, intermittent, and variable renewable energy integrated low carbon systems. These transitioning electricity systems have moved from a situation of “matching available supply with dynamic demand” to “matching dynamic supply with dynamic demand.” These transformations have led to several new challenges - significant mismatch in periods of high supply and high demand, the shift in the method of accessing energy resources for electricity generation from “procure, store and generate when needed” to “generate when available,” continuous struggle to match variable supply with variable demand, and installed capacity redundancy, temporal as well as permanent leading to low plant load factors. Actions on the supply-side alone will not be enough to address these challenges and achieve optimal functioning of the electricity system. We need effective demand-side solutions, too, to manage variations in both supply and demand. In this paper, it is proposed to study the effectiveness of demand-side interventions as potential solutions for managing the variabilities introduced by renewable energy mainstreaming. Towards this, we develop a mixed-integer linear programming model to implement and validate emergency and economic demand response (DR) programs. DR options like load curtailment, short-, medium- and long-term load shifting are considered with both incentive-based and penalty-based pricing strategies to influence consumer participation. The Karnataka electricity system is used as a case study for model implementation and validation. The findings suggest that DR interventions are very effective in moderating variability in electricity demand by chopping the peak loads and topping the valleys. Further, benefits include postponement of installed capacity additions, enhanced utilization of available capacity, and minimization of demand variability.

Suggested Citation

  • Balasubramanian, S. & Balachandra, P., 2021. "Effectiveness of demand response in achieving supply-demand matching in a renewables dominated electricity system: A modelling approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
  • Handle: RePEc:eee:rensus:v:147:y:2021:i:c:s1364032121005323
    DOI: 10.1016/j.rser.2021.111245
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121005323
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balachandra, P. & Chandru, Vijay, 1999. "Modelling electricity demand with representative load curves," Energy, Elsevier, vol. 24(3), pages 219-230.
    2. Brouwer, Anne Sjoerd & van den Broek, Machteld & Zappa, William & Turkenburg, Wim C. & Faaij, André, 2016. "Least-cost options for integrating intermittent renewables in low-carbon power systems," Applied Energy, Elsevier, vol. 161(C), pages 48-74.
    3. Pina, André & Silva, Carlos & Ferrão, Paulo, 2012. "The impact of demand side management strategies in the penetration of renewable electricity," Energy, Elsevier, vol. 41(1), pages 128-137.
    4. Karunanithi, K. & Saravanan, S. & Prabakar, B.R. & Kannan, S. & Thangaraj, C., 2017. "Integration of Demand and Supply Side Management strategies in Generation Expansion Planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 966-982.
    5. Anjo, João & Neves, Diana & Silva, Carlos & Shivakumar, Abhishek & Howells, Mark, 2018. "Modeling the long-term impact of demand response in energy planning: The Portuguese electric system case study," Energy, Elsevier, vol. 165(PA), pages 456-468.
    6. Craparo, E.M. & Sprague, J.G., 2019. "Integrated supply- and demand-side energy management for expeditionary environmental control," Applied Energy, Elsevier, vol. 233, pages 352-366.
    7. Osorio, Sebastian & van Ackere, Ann & Larsen, Erik R., 2017. "Interdependencies in security of electricity supply," Energy, Elsevier, vol. 135(C), pages 598-609.
    8. Mukherji, A. & Das, B. & Majumdar, N. & Nayak, N.C. & Sethi, R.R. & Sharma, B.R., 2009. "Metering of agricultural power supply in West Bengal, India: Who gains and who loses?," Energy Policy, Elsevier, vol. 37(12), pages 5530-5539, December.
    9. Olkkonen, Ville & Ekström, Jussi & Hast, Aira & Syri, Sanna, 2018. "Utilising demand response in the future Finnish energy system with increased shares of baseload nuclear power and variable renewable energy," Energy, Elsevier, vol. 164(C), pages 204-217.
    10. Amrutha, A.A. & Balachandra, P. & Mathirajan, M., 2017. "Role of targeted policies in mainstreaming renewable energy in a resource constrained electricity system: A case study of Karnataka electricity system in India," Energy Policy, Elsevier, vol. 106(C), pages 48-58.
    11. Noor, Sana & Yang, Wentao & Guo, Miao & van Dam, Koen H. & Wang, Xiaonan, 2018. "Energy Demand Side Management within micro-grid networks enhanced by blockchain," Applied Energy, Elsevier, vol. 228(C), pages 1385-1398.
    12. Broeer, Torsten & Fuller, Jason & Tuffner, Francis & Chassin, David & Djilali, Ned, 2014. "Modeling framework and validation of a smart grid and demand response system for wind power integration," Applied Energy, Elsevier, vol. 113(C), pages 199-207.
    13. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    14. Thakur, Jagruti & Chakraborty, Basab, 2016. "Demand side management in developing nations: A mitigating tool for energy imbalance and peak load management," Energy, Elsevier, vol. 114(C), pages 895-912.
    15. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    16. Parra, David & Swierczynski, Maciej & Stroe, Daniel I. & Norman, Stuart.A. & Abdon, Andreas & Worlitschek, Jörg & O’Doherty, Travis & Rodrigues, Lucelia & Gillott, Mark & Zhang, Xiaojin & Bauer, Chris, 2017. "An interdisciplinary review of energy storage for communities: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 730-749.
    17. Ikpe, Eka & Torriti, Jacopo, 2018. "A means to an industrialisation end? Demand Side Management in Nigeria," Energy Policy, Elsevier, vol. 115(C), pages 207-215.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Lee, Hyun-Suk, 2024. "Automated tariff design for energy supply–demand matching based on Bayesian optimization: Technical framework and policy implications," Energy Policy, Elsevier, vol. 188(C).
    3. Taimoor Ahmad Khan & Amjad Ullah & Ghulam Hafeez & Imran Khan & Sadia Murawwat & Faheem Ali & Sajjad Ali & Sheraz Khan & Khalid Rehman, 2022. "A Fractional Order Super Twisting Sliding Mode Controller for Energy Management in Smart Microgrid Using Dynamic Pricing Approach," Energies, MDPI, vol. 15(23), pages 1-14, November.
    4. César Berna-Escriche & Carlos Vargas-Salgado & David Alfonso-Solar & Alberto Escrivá-Castells, 2022. "Hydrogen Production from Surplus Electricity Generated by an Autonomous Renewable System: Scenario 2040 on Grand Canary Island, Spain," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    5. Bugaje, Bilal & Rutherford, Peter & Clifford, Mike, 2022. "Convenience in a residence with demand response: A system dynamics simulation model," Applied Energy, Elsevier, vol. 314(C).
    6. Sambasivam, Balasubramanian & Xu, Yuan, 2023. "Reducing solar PV curtailment through demand-side management and economic dispatch in Karnataka, India," Energy Policy, Elsevier, vol. 172(C).
    7. Jasiński, Tomasz, 2022. "A new approach to modeling cycles with summer and winter demand peaks as input variables for deep neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    8. van de Loo, Maaike & Camacho Poyato, Emilio & van Halsema, Gerardo & Rodríguez Díaz, Juan Antonio, 2024. "Defining the optimization strategy for solar energy use in large water distribution networks: A case study from the Valle Inferior irrigation system, Spain," Renewable Energy, Elsevier, vol. 228(C).
    9. Campos, José & Csontos, Csaba & Munkácsy, Béla, 2023. "Electricity scenarios for Hungary: Possible role of wind and solar resources in the energy transition," Energy, Elsevier, vol. 278(PB).
    10. Guo, Zhilong & Xu, Wei & Yan, Yue & Sun, Mei, 2023. "How to realize the power demand side actively matching the supply side? ——A virtual real-time electricity prices optimization model based on credit mechanism," Applied Energy, Elsevier, vol. 343(C).
    11. Oleg Lugovoy & Varun Jyothiprakash & Sourish Chatterjee & Samridh Sharma & Arijit Mukherjee & Abhishek Das & Shreya Some & Disha L. Dinesha & Nandini Das & Parthaa Bosu & Shyamasree Dasgupta & Lavanya, 2021. "Towards a Zero-Carbon Electricity System for India in 2050: IDEEA Model-Based Scenarios Integrating Wind and Solar Complementarity and Geospatial Endowments," Energies, MDPI, vol. 14(21), pages 1-57, October.
    12. Kandpal, Bakul & Backe, Stian & Crespo del Granado, Pedro, 2024. "Power purchase agreements for plus energy neighbourhoods: Financial risk mitigation through predictive modelling and bargaining theory," Applied Energy, Elsevier, vol. 358(C).
    13. Garcia, Alexandre Schwinden & Alves, Frederick Fagundes & Pimentel Filgueiras, João Marcello, 2024. "Tariff flags and electricity consumption response in Brazil," Utilities Policy, Elsevier, vol. 88(C).
    14. Zhang, Anan & Zheng, Yadi & Huang, Huang & Ding, Ning & Zhang, Chengqian, 2022. "Co-integration theory-based cluster time-varying load optimization control model of regional integrated energy system," Energy, Elsevier, vol. 260(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    2. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    3. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    4. Heffron, Raphael & Körner, Marc-Fabian & Wagner, Jonathan & Weibelzahl, Martin & Fridgen, Gilbert, 2020. "Industrial demand-side flexibility: A key element of a just energy transition and industrial development," Applied Energy, Elsevier, vol. 269(C).
    5. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    6. Saffari, Mohammadali & Crownshaw, Timothy & McPherson, Madeleine, 2023. "Assessing the potential of demand-side flexibility to improve the performance of electricity systems under high variable renewable energy penetration," Energy, Elsevier, vol. 272(C).
    7. Summerbell, Daniel L. & Khripko, Diana & Barlow, Claire & Hesselbach, Jens, 2017. "Cost and carbon reductions from industrial demand-side management: Study of potential savings at a cement plant," Applied Energy, Elsevier, vol. 197(C), pages 100-113.
    8. Kwon, Pil Seok & Østergaard, Poul, 2014. "Assessment and evaluation of flexible demand in a Danish future energy scenario," Applied Energy, Elsevier, vol. 134(C), pages 309-320.
    9. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    10. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "Integrating supply and demand-side management in renewable-based energy systems," Energy, Elsevier, vol. 232(C).
    11. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    12. Damilola Elizabeth Babatunde & Olubayo Moses Babatunde & Tolulope Olusegun Akinbulire & Peter Olabisi Oluseyi, 2018. "Hybrid Energy Systems Model with the Inclusion of Energy Efficiency Measures: A Rural Application Perspective," International Journal of Energy Economics and Policy, Econjournals, vol. 8(4), pages 310-323.
    13. Ali, Muhammad Rizwan & Shafiq, Muhammad, 2021. "Revealing expert perspectives on challenges to electricity Demand-Side Management in Pakistan: An application of Q-Methodology," Utilities Policy, Elsevier, vol. 70(C).
    14. Pang, Yuexia & He, Yongxiu & Jiao, Jie & Cai, Hua, 2020. "Power load demand response potential of secondary sectors in China: The case of western Inner Mongolia," Energy, Elsevier, vol. 192(C).
    15. Jan Stede, 2016. "Demand Response in Germany: Technical Potential, Benefits and Regulatory Challenges," DIW Roundup: Politik im Fokus 96, DIW Berlin, German Institute for Economic Research.
    16. Gils, Hans Christian, 2016. "Economic potential for future demand response in Germany – Modeling approach and case study," Applied Energy, Elsevier, vol. 162(C), pages 401-415.
    17. Horowitz, Shira & Mauch, Brandon & Sowell, Fallaw, 2014. "Forecasting residential air conditioning loads," Applied Energy, Elsevier, vol. 132(C), pages 47-55.
    18. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    19. Anjo, João & Neves, Diana & Silva, Carlos & Shivakumar, Abhishek & Howells, Mark, 2018. "Modeling the long-term impact of demand response in energy planning: The Portuguese electric system case study," Energy, Elsevier, vol. 165(PA), pages 456-468.
    20. Talaat, M. & Hatata, A.Y. & Alsayyari, Abdulaziz S. & Alblawi, Adel, 2020. "A smart load management system based on the grasshopper optimization algorithm using the under-frequency load shedding approach," Energy, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:147:y:2021:i:c:s1364032121005323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.