IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1421-d222459.html
   My bibliography  Save this article

Observer-Based Sliding Mode Control to Improve Stability of Three-Phase LCL-Filtered Grid-Connected VSIs

Author

Listed:
  • Min Huang

    (Department of Electrical Engineering, Shanghai Maritime University, Shanghai 201306, China)

  • Han Li

    (Department of Electrical Engineering, Shanghai Maritime University, Shanghai 201306, China)

  • Weimin Wu

    (Department of Electrical Engineering, Shanghai Maritime University, Shanghai 201306, China)

  • Frede Blaabjerg

    (Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

Abstract

Grid-connected voltage source inverters (VSIs) with LCL filters have been widely used for distributed generation systems (DGs). Various control methods have been studied to achieve good performance. Among them, sliding mode control has been applied to LCL-filtered grid-connected VSIs for its fast, dynamic response and strong robustness. However, LCL networks can easily cause instability problems under weak grid conditions such as grid impedance variation. At the same time, the stability design of sliding mode control applied for LCL-filtered grid-connected inverters are important, but they lack detailed parameters design in recent papers. In this paper, a design of observer-based sliding mode control to improve the stability of three-phase LCL-filtered grid-connected VSIs was proposed. The theoretical stability analysis was developed to consider the effect of the system discretization and grid impedance variations. Finally, a 3-kW, 110-V, 50-Hz experimental setup has been built to demonstrate the validation of the proposed method.

Suggested Citation

  • Min Huang & Han Li & Weimin Wu & Frede Blaabjerg, 2019. "Observer-Based Sliding Mode Control to Improve Stability of Three-Phase LCL-Filtered Grid-Connected VSIs," Energies, MDPI, vol. 12(8), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1421-:d:222459
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1421/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1421/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanxue Yu & Haoyu Li & Zhenwei Li & Zhou Zhao, 2017. "Modeling and Analysis of Resonance in LCL-Type Grid-Connected Inverters under Different Control Schemes," Energies, MDPI, vol. 10(1), pages 1-17, January.
    2. Iman Lorzadeh & Hossein Askarian Abyaneh & Mehdi Savaghebi & Alireza Bakhshai & Josep M. Guerrero, 2016. "Capacitor Current Feedback-Based Active Resonance Damping Strategies for Digitally-Controlled Inductive-Capacitive-Inductive-Filtered Grid-Connected Inverters," Energies, MDPI, vol. 9(8), pages 1-32, August.
    3. Matthias Schiesser & Sébastien Wasterlain & Mario Marchesoni & Mauro Carpita, 2018. "A Simplified Design Strategy for Multi-Resonant Current Control of a Grid-Connected Voltage Source Inverter with an LCL Filter," Energies, MDPI, vol. 11(3), pages 1-15, March.
    4. Seung-Jin Yoon & Ngoc Bao Lai & Kyeong-Hwa Kim, 2018. "A Systematic Controller Design for a Grid-Connected Inverter with LCL Filter Using a Discrete-Time Integral State Feedback Control and State Observer," Energies, MDPI, vol. 11(2), pages 1-20, February.
    5. Wei Jin & Yongli Li & Guangyu Sun & Lizhi Bu, 2017. "H∞ Repetitive Control Based on Active Damping with Reduced Computation Delay for LCL-Type Grid-Connected Inverters," Energies, MDPI, vol. 10(5), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. João Faria & João Fermeiro & José Pombo & Maria Calado & Sílvio Mariano, 2020. "Proportional Resonant Current Control and Output-Filter Design Optimization for Grid-Tied Inverters Using Grey Wolf Optimizer," Energies, MDPI, vol. 13(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jose Miguel Espi & Rafael Garcia-Gil & Jaime Castello, 2017. "Capacitive Emulation for LCL-Filtered Grid-Connected Converters," Energies, MDPI, vol. 10(7), pages 1-15, July.
    2. Yuxing Liu & Jiazhu Xu & Zhikang Shuai & Yong Li & Yanjian Peng & Chonggan Liang & Guiping Cui & Sijia Hu & Mingmin Zhang & Bin Xie, 2020. "A Novel Harmonic Suppression Traction Transformer with Integrated Filtering Inductors for Railway Systems," Energies, MDPI, vol. 13(2), pages 1-18, January.
    3. Cheng Nie & Yue Wang & Wanjun Lei & Tian Li & Shiyuan Yin, 2018. "Modeling and Enhanced Error-Free Current Control Strategy for Inverter with Virtual Resistor Damping," Energies, MDPI, vol. 11(10), pages 1-15, September.
    4. Rizka Bimarta & Thuy Vi Tran & Kyeong-Hwa Kim, 2018. "Frequency-Adaptive Current Controller Design Based on LQR State Feedback Control for a Grid-Connected Inverter under Distorted Grid," Energies, MDPI, vol. 11(10), pages 1-29, October.
    5. Seyyed Yousef Mousazadeh Mousavi & Alireza Jalilian & Mehdi Savaghebi & Josep M. Guerrero, 2017. "Flexible Compensation of Voltage and Current Unbalance and Harmonics in Microgrids," Energies, MDPI, vol. 10(10), pages 1-19, October.
    6. Thuy Vi Tran & Seung-Jin Yoon & Kyeong-Hwa Kim, 2018. "An LQR-Based Controller Design for an LCL-Filtered Grid-Connected Inverter in Discrete-Time State-Space under Distorted Grid Environment," Energies, MDPI, vol. 11(8), pages 1-28, August.
    7. Chen Zheng & Qionglin Li & Lin Zhou & Bin Li & Mingxuan Mao, 2018. "The Interaction Stability Analysis of a Multi-Inverter System Containing Different Types of Inverters," Energies, MDPI, vol. 11(9), pages 1-17, August.
    8. En-Chih Chang & Chun-An Cheng & Lung-Sheng Yang, 2019. "Nonsingular Terminal Sliding Mode Control Based on Binary Particle Swarm Optimization for DC–AC Converters," Energies, MDPI, vol. 12(11), pages 1-14, June.
    9. Qingzhu Wan & Hongfan Zhang, 2018. "Research on Resonance Mechanism and Suppression Technology of Photovoltaic Cluster Inverter," Energies, MDPI, vol. 11(4), pages 1-16, April.
    10. Matthias Schiesser & Sébastien Wasterlain & Mario Marchesoni & Mauro Carpita, 2018. "A Simplified Design Strategy for Multi-Resonant Current Control of a Grid-Connected Voltage Source Inverter with an LCL Filter," Energies, MDPI, vol. 11(3), pages 1-15, March.
    11. Chengbi Zeng & Sudan Li & Hanwen Wang & Hong Miao, 2021. "A Frequency Adaptive Scheme Based on Newton Structure of PRRC for LCL-Type Inverter Connected with Weak Grid," Energies, MDPI, vol. 14(14), pages 1-18, July.
    12. Md Alamgir Hossain & Hemanshu Roy Pota & Walid Issa & Md Jahangir Hossain, 2017. "Overview of AC Microgrid Controls with Inverter-Interfaced Generations," Energies, MDPI, vol. 10(9), pages 1-27, August.
    13. Dante Mora & Ciro Núñez & Nancy Visairo & Juan Segundo & Eugenio Camargo, 2019. "Control for Three-Phase LCL-Filter PWM Rectifier with BESS-Oriented Application," Energies, MDPI, vol. 12(21), pages 1-17, October.
    14. Hemakesavulu Oruganti & Subranshu Sekhar Dash & Chellammal Nallaperumal & Sridhar Ramasamy, 2018. "A Proportional Resonant Controller for Suppressing Resonance in Grid Tied Multilevel Inverter," Energies, MDPI, vol. 11(5), pages 1-15, April.
    15. Shiying Zhou & Xudong Zou & Donghai Zhu & Li Tong & Yong Kang, 2017. "Improved Capacitor Voltage Feedforward for Three-Phase LCL-Type Grid-Connected Converter to Suppress Start-Up Inrush Current," Energies, MDPI, vol. 10(5), pages 1-19, May.
    16. Faris Adnan Padhilah & Kyeong-Hwa Kim, 2020. "A Power Flow Control Strategy for Hybrid Control Architecture of DC Microgrid under Unreliable Grid Connection Considering Electricity Price Constraint," Sustainability, MDPI, vol. 12(18), pages 1-28, September.
    17. Bingzhang Li & Shenghua Huang & Xi Chen, 2017. "Performance Improvement for Two-Stage Single-Phase Grid-Connected Converters Using a Fast DC Bus Control Scheme and a Novel Synchronous Frame Current Controller," Energies, MDPI, vol. 10(3), pages 1-30, March.
    18. Zhilin Lyu & Qing Wei & Yiyi Zhang & Junhui Zhao & Emad Manla, 2018. "Adaptive Virtual Impedance Droop Control Based on Consensus Control of Reactive Current," Energies, MDPI, vol. 11(7), pages 1-17, July.
    19. Meenakshi Jayaraman & Sreedevi VT, 2017. "Power Quality Improvement in a Cascaded Multilevel Inverter Interfaced Grid Connected System Using a Modified Inductive–Capacitive–Inductive Filter with Reduced Power Loss and Improved Harmonic Attenu," Energies, MDPI, vol. 10(11), pages 1-23, November.
    20. Yuxia Jiang & Yonggang Li & Yanjun Tian & Luo Wang, 2018. "Phase-Locked Loop Research of Grid-Connected Inverter Based on Impedance Analysis," Energies, MDPI, vol. 11(11), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1421-:d:222459. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.