IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2503-d171139.html
   My bibliography  Save this article

Numerical Study of Fracture Network Evolution during Nitrogen Fracturing Processes in Shale Reservoirs

Author

Listed:
  • Xiangxiang Zhang

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
    School of Engineering, University of Tasmania, Hobart, TAS 7005, Australia)

  • Jianguo Wang

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
    State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Feng Gao

    (School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221116, China
    State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou 221116, China)

  • Xiaolin Wang

    (School of Engineering, University of Tasmania, Hobart, TAS 7005, Australia)

Abstract

This paper develops a numerical model to study fracture network evolution during the nitrogen fracturing process in shale reservoirs. This model considers the differences of incompressible and compressible fluids, shear and tensile failure modes, shale heterogeneity, and the strength and permeability of both shale matrix and bedding planes through the coupling of mechanical-seepage-damage during fracturing fluid injection. The results show that nitrogen fracturing has a lower breakdown pressure and larger seepage zone than hydraulic fracturing under the same injection pressure. Tensile failure was identified as the major reason for the initiation and propagation of fractures. Ignoring the effect of bedding planes, the fracture initiation pressure, breakdown pressure, and fracturing effectiveness reached their maxima when the stress ratio is 1. Under the same strength ratio, the propagation path of the fractures was controlled by the stronger effect that was casused by the bedding angle and stress ratio. With increasing the strength ratio, the fracture number and shearing of the bedding plane increased significantly and the failure pattern changed from tensile-only mode to tensile-shear mode. These analyses indicated that the fracture network of bedding shale was typically induced by the combined impacts of stress ratio, bedding angle and strength ratio.

Suggested Citation

  • Xiangxiang Zhang & Jianguo Wang & Feng Gao & Xiaolin Wang, 2018. "Numerical Study of Fracture Network Evolution during Nitrogen Fracturing Processes in Shale Reservoirs," Energies, MDPI, vol. 11(10), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2503-:d:171139
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianming He & Lekan Olatayo Afolagboye & Chong Lin & Xiaole Wan, 2018. "An Experimental Investigation of Hydraulic Fracturing in Shale Considering Anisotropy and Using Freshwater and Supercritical CO 2," Energies, MDPI, vol. 11(3), pages 1-13, March.
    2. Minyue Zhou & Yifei Zhang & Runqing Zhou & Jin Hao & Jijin Yang, 2018. "Mechanical Property Measurements and Fracture Propagation Analysis of Longmaxi Shale by Micro-CT Uniaxial Compression," Energies, MDPI, vol. 11(6), pages 1-18, May.
    3. Chengpeng Zhang & Pathegama Gamage Ranjith, 2018. "Experimental Study of Matrix Permeability of Gas Shale: An Application to CO 2 -Based Shale Fracturing," Energies, MDPI, vol. 11(4), pages 1-17, March.
    4. Cheng Cheng & Xiao Li, 2018. "Cyclic Experimental Studies on Damage Evolution Behaviors of Shale Dependent on Structural Orientations and Confining Pressures," Energies, MDPI, vol. 11(1), pages 1-20, January.
    5. Zhaohui Chong & Xuehua Li & Xiangyu Chen & Ji Zhang & Jingzheng Lu, 2017. "Numerical Investigation into the Effect of Natural Fracture Density on Hydraulic Fracture Network Propagation," Energies, MDPI, vol. 10(7), pages 1-33, July.
    6. Middleton, Richard S. & Carey, J. William & Currier, Robert P. & Hyman, Jeffrey D. & Kang, Qinjun & Karra, Satish & Jiménez-Martínez, Joaquín & Porter, Mark L. & Viswanathan, Hari S., 2015. "Shale gas and non-aqueous fracturing fluids: Opportunities and challenges for supercritical CO2," Applied Energy, Elsevier, vol. 147(C), pages 500-509.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Bo & Guo, Tiankui & Qu, Zhanqing & Wang, Jiwei & Chen, Ming & Liu, Xiaoqiang, 2023. "Numerical simulation of fracture propagation and production performance in a fractured geothermal reservoir using a 2D FEM-based THMD coupling model," Energy, Elsevier, vol. 273(C).
    2. Li, Ze & Li, Gao & Li, Hongtao & Liu, Jinyuan & Jiang, Zujun & (Bill) Zeng, Fanhua, 2023. "Effects of shale swelling on shale mechanics during shale–liquid interaction," Energy, Elsevier, vol. 279(C).
    3. Peibo Li & Jianguo Wang & Wei Liang & Rui Sun, 2023. "An Analytical and Numerical Analysis for Hydraulic Fracture Propagation through Reservoir Interface in Coal-Measure Superimposed Reservoirs," Sustainability, MDPI, vol. 15(5), pages 1-34, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Shahzad Kamal & Marwan Mohammed & Mohamed Mahmoud & Salaheldin Elkatatny, 2018. "Development of Chelating Agent-Based Polymeric Gel System for Hydraulic Fracturing," Energies, MDPI, vol. 11(7), pages 1-15, June.
    2. Arash Kamali-Asl & Mark D Zoback & Arjun H. Kohli, 2021. "Effects of Supercritical CO 2 on Matrix Permeability of Unconventional Formations," Energies, MDPI, vol. 14(4), pages 1-29, February.
    3. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    4. Filip Simeski & Matthias Ihme, 2023. "Supercritical fluids behave as complex networks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    5. Weiqiang Song & Hongjian Ni & Ruihe Wang & Mengyun Zhao, 2017. "Wellbore flow field of coiled tubing drilling with supercritical carbon dioxide," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 7(4), pages 745-755, August.
    6. Zhao‐Zhong Yang & Liang‐Ping Yi & Xiao‐Gang Li & Yu Li & Min Jia, 2018. "Phase control of downhole fluid during supercritical carbon dioxide fracturing," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 1079-1089, December.
    7. Huang, Liang & Ning, Zhengfu & Wang, Qing & Zhang, Wentong & Cheng, Zhilin & Wu, Xiaojun & Qin, Huibo, 2018. "Effect of organic type and moisture on CO2/CH4 competitive adsorption in kerogen with implications for CO2 sequestration and enhanced CH4 recovery," Applied Energy, Elsevier, vol. 210(C), pages 28-43.
    8. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.
    9. Han, Jinju & Lee, Minkyu & Lee, Wonsuk & Lee, Youngsoo & Sung, Wonmo, 2016. "Effect of gravity segregation on CO2 sequestration and oil production during CO2 flooding," Applied Energy, Elsevier, vol. 161(C), pages 85-91.
    10. An, Qiyi & Zhang, Qingsong & Li, Xianghui & Yu, Hao & Yin, Zhanchao & Zhang, Xiao, 2022. "Accounting for dynamic alteration effect of SC-CO2 to assess role of pore structure on rock strength: A comparative study," Energy, Elsevier, vol. 260(C).
    11. Zhou, Junping & Tian, Shifeng & Zhou, Lei & Xian, Xuefu & Yang, Kang & Jiang, Yongdong & Zhang, Chengpeng & Guo, Yaowen, 2020. "Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale," Energy, Elsevier, vol. 191(C).
    12. Xinwei Li & Zhishu Yao & Xiaohu Liu & Xianwen Huang, 2022. "Energy Evolution and Damage Mechanism of Fractured Sandstone with Different Angles," Energies, MDPI, vol. 15(4), pages 1-16, February.
    13. Tong, Zi-Xiang & Li, Ming-Jia & He, Ya-Ling & Tan, Hou-Zhang, 2017. "Simulation of real time particle deposition and removal processes on tubes by coupled numerical method," Applied Energy, Elsevier, vol. 185(P2), pages 2181-2193.
    14. Pan, Jienan & Du, Xuetian & Wang, Xianglong & Hou, Quanlin & Wang, Zhenzhi & Yi, Jiale & Li, Meng, 2024. "Pore and permeability changes in coal induced by true triaxial supercritical carbon dioxide fracturing based on low-field nuclear magnetic resonance," Energy, Elsevier, vol. 286(C).
    15. Li, Bo & Yu, Hao & Xu, WenLong & Huang, HanWei & Huang, MengCheng & Meng, SiWei & Liu, He & Wu, HengAn, 2023. "A multi-physics coupled multi-scale transport model for CO2 sequestration and enhanced recovery in shale formation with fractal fracture networks," Energy, Elsevier, vol. 284(C).
    16. Ningbo Zhang & Changyou Liu & Baobao Chen, 2018. "A Case Study of Presplitting Blasting Parameters of Hard and Massive Roof Based on the Interaction between Support and Overlying Strata," Energies, MDPI, vol. 11(6), pages 1-14, May.
    17. Yi Hu & Feng Liu & Yuqiang Hu & Yong Kang & Hao Chen & Jiawei Liu, 2019. "Propagation Characteristics of Supercritical Carbon Dioxide Induced Fractures under True Tri-Axial Stresses," Energies, MDPI, vol. 12(22), pages 1-13, November.
    18. Shehzad Ahmed & Khaled Abdalla Elraies & Muhammad Rehan Hashmet & Mohamad Sahban Alnarabiji, 2018. "Empirical Modeling of the Viscosity of Supercritical Carbon Dioxide Foam Fracturing Fluid under Different Downhole Conditions," Energies, MDPI, vol. 11(4), pages 1-16, March.
    19. Dai, Xuguang & Wei, Chongtao & Wang, Meng & Ma, Ruying & Song, Yu & Zhang, Junjian & Wang, Xiaoqi & Shi, Xuan & Vandeginste, Veerle, 2023. "Interaction mechanism of supercritical CO2 with shales and a new quantitative storage capacity evaluation method," Energy, Elsevier, vol. 264(C).
    20. Kuruneru, Sahan Trushad Wickramasooriya & Sauret, Emilie & Saha, Suvash Chandra & Gu, YuanTong, 2016. "Numerical investigation of the temporal evolution of particulate fouling in metal foams for air-cooled heat exchangers," Applied Energy, Elsevier, vol. 184(C), pages 531-547.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2503-:d:171139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.