IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i9p1273-d109919.html
   My bibliography  Save this article

A Principal Components Rearrangement Method for Feature Representation and Its Application to the Fault Diagnosis of CHMI

Author

Listed:
  • Zhuo Liu

    (Department of Electrical Automation, Shanghai Maritime University, Shanghai 201306, China)

  • Tianzhen Wang

    (Department of Electrical Automation, Shanghai Maritime University, Shanghai 201306, China)

  • Tianhao Tang

    (Department of Electrical Automation, Shanghai Maritime University, Shanghai 201306, China)

  • Yide Wang

    (Institut d’Electronique et Télécommunications de Rennes, UMR CNRS 6164, Polytech Nantes, Rue Christian Pauc, BP 50609, 44306 Nantes CEDEX 3, France)

Abstract

Cascaded H-bridge Multilevel Inverter (CHMI) is widely used in industrial applications thanks to its many advantages. However, the reliability of a CHMI is decreased with the increase of its levels. Fault diagnosis techniques play a key role in ensuring the reliability of a CHMI. The performance of a fault diagnosis method depends on the characteristics of the extracted features. In practice, some extracted features may be very similar to ensure a good diagnosis performance at some H-bridges of CHMI. The situation becomes even worse in the presence of noise. To fix these problems, in this paper, signal denoising and data preprocessing techniques are firstly developed. Then, a Principal Components Rearrangement method (PCR) is proposed to represent the different features sufficiently distinct from each other. Finally, a PCR-based fault diagnosis strategy is designed. The performance of the proposed strategy is compared with other fault diagnosis strategies, based on a 7-level CHMI hardware platform.

Suggested Citation

  • Zhuo Liu & Tianzhen Wang & Tianhao Tang & Yide Wang, 2017. "A Principal Components Rearrangement Method for Feature Representation and Its Application to the Fault Diagnosis of CHMI," Energies, MDPI, vol. 10(9), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1273-:d:109919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/9/1273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/9/1273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hsueh-Hsien Chang & Nguyen Viet Linh, 2017. "Statistical Feature Extraction for Fault Locations in Nonintrusive Fault Detection of Low Voltage Distribution Systems," Energies, MDPI, vol. 10(5), pages 1-20, April.
    2. Yonglong Yan & Jian Li & David Wenzhong Gao, 2014. "Condition Parameter Modeling for Anomaly Detection in Wind Turbines," Energies, MDPI, vol. 7(5), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Jinping & Zhang, Ke & Al-Durra, Ahmed & Zhou, Daming, 2020. "A novel fault diagnostic method in power converters for wind power generation system," Applied Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    2. Peng Sun & Jian Li & Junsheng Chen & Xiao Lei, 2016. "A Short-Term Outage Model of Wind Turbines with Doubly Fed Induction Generators Based on Supervisory Control and Data Acquisition Data," Energies, MDPI, vol. 9(11), pages 1-21, October.
    3. Yuansheng Huang & Lei Yang & Shijian Liu & Guangli Wang, 2019. "Multi-Step Wind Speed Forecasting Based On Ensemble Empirical Mode Decomposition, Long Short Term Memory Network and Error Correction Strategy," Energies, MDPI, vol. 12(10), pages 1-22, May.
    4. Hong-Keun Ji & Guoming Wang & Gyung-Suk Kil, 2020. "Optimal Detection and Identification of DC Series Arc in Power Distribution System on Shipboards," Energies, MDPI, vol. 13(22), pages 1-16, November.
    5. Alan Turnbull & James Carroll & Alasdair McDonald, 2022. "A Comparative Analysis on the Variability of Temperature Thresholds through Time for Wind Turbine Generators Using Normal Behaviour Modelling," Energies, MDPI, vol. 15(14), pages 1-13, July.
    6. Luis Hernández-Callejo, 2019. "A Comprehensive Review of Operation and Control, Maintenance and Lifespan Management, Grid Planning and Design, and Metering in Smart Grids," Energies, MDPI, vol. 12(9), pages 1-50, April.
    7. Wei Sun & Mohan Liu & Yi Liang, 2015. "Wind Speed Forecasting Based on FEEMD and LSSVM Optimized by the Bat Algorithm," Energies, MDPI, vol. 8(7), pages 1-23, June.
    8. Conor McKinnon & Alan Turnbull & Sofia Koukoura & James Carroll & Alasdair McDonald, 2020. "Effect of Time History on Normal Behaviour Modelling Using SCADA Data to Predict Wind Turbine Failures," Energies, MDPI, vol. 13(18), pages 1-19, September.
    9. Conor McKinnon & James Carroll & Alasdair McDonald & Sofia Koukoura & David Infield & Conaill Soraghan, 2020. "Comparison of New Anomaly Detection Technique for Wind Turbine Condition Monitoring Using Gearbox SCADA Data," Energies, MDPI, vol. 13(19), pages 1-19, October.
    10. Jorge De La Cruz & Eduardo Gómez-Luna & Majid Ali & Juan C. Vasquez & Josep M. Guerrero, 2023. "Fault Location for Distribution Smart Grids: Literature Overview, Challenges, Solutions, and Future Trends," Energies, MDPI, vol. 16(5), pages 1-37, February.
    11. Danilo Pinto Moreira de Souza & Eliane Da Silva Christo & Aryfrance Rocha Almeida, 2017. "Location of Faults in Power Transmission Lines Using the ARIMA Method," Energies, MDPI, vol. 10(10), pages 1-12, October.
    12. Hong-Keun Ji & Guoming Wang & Woo-Hyun Kim & Gyung-Suk Kil, 2018. "Optimal Design of a Band Pass Filter and an Algorithm for Series Arc Detection," Energies, MDPI, vol. 11(4), pages 1-13, April.
    13. Li, Yanting & Liu, Shujun & Shu, Lianjie, 2019. "Wind turbine fault diagnosis based on Gaussian process classifiers applied to operational data," Renewable Energy, Elsevier, vol. 134(C), pages 357-366.
    14. Aleksandra Grzesiek & Radosław Zimroz & Paweł Śliwiński & Norbert Gomolla & Agnieszka Wyłomańska, 2021. "A Method for Structure Breaking Point Detection in Engine Oil Pressure Data," Energies, MDPI, vol. 14(17), pages 1-24, September.
    15. Conor McKinnon & James Carroll & Alasdair McDonald & Sofia Koukoura & Charlie Plumley, 2021. "Investigation of Isolation Forest for Wind Turbine Pitch System Condition Monitoring Using SCADA Data," Energies, MDPI, vol. 14(20), pages 1-20, October.
    16. Moghaddass, Ramin & Sheng, Shuangwen, 2019. "An anomaly detection framework for dynamic systems using a Bayesian hierarchical framework," Applied Energy, Elsevier, vol. 240(C), pages 561-582.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1273-:d:109919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.