IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1822-d230867.html
   My bibliography  Save this article

Multi-Step Wind Speed Forecasting Based On Ensemble Empirical Mode Decomposition, Long Short Term Memory Network and Error Correction Strategy

Author

Listed:
  • Yuansheng Huang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Lei Yang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Shijian Liu

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China)

  • Guangli Wang

    (State Grid Jibei Electric Power Company Engineering Management Company, Beijing 100070, China)

Abstract

It is of great significance for wind power plant to construct an accurate multi-step wind speed prediction model, especially considering its operations and grid integration. By integrating with a data pre-processing measure, a parameter optimization algorithm and error correction strategy, a novel forecasting method for multi-step wind speed in short period is put forward in this article. In the suggested measure, the EEMD (Ensemble Empirical Mode Decomposition) is applied to extract a series of IMFs (intrinsic mode functions) from the initial wind data sequence; the LSTM (Long Short Term Memory) measure is executed as the major forecasting method for each IMF; the GRNN (general regression neural network) is executed as the secondary forecasting method to forecast error sequences for each IMF; and the BSO (Brain Storm Optimization) is employed to optimize the parameter for GRNN during the training process. To verify the validity of the suggested EEMD-LSTM-GRNN-BSO model, eight models were applied on three different wind speed sequences. The calculation outcomes reveal that: (1) the EEMD is able to boost the wind speed prediction capacity and robustness of the LSTM approach effectively; (2) the BSO based parameter optimization method is effective in finding the optimal parameter for GRNN and improving the forecasting performance for the EEMD-LSTM-GRNN model; (3) the error correction method based on the optimized GRNN promotes the forecasting accuracy of the EEMD-LSTM model significantly; and (4) compared with all models involved, the proposed EEMD-LSTM-GRNN-BSO model is proved to have the best performance in predicting the short-term wind speed sequence.

Suggested Citation

  • Yuansheng Huang & Lei Yang & Shijian Liu & Guangli Wang, 2019. "Multi-Step Wind Speed Forecasting Based On Ensemble Empirical Mode Decomposition, Long Short Term Memory Network and Error Correction Strategy," Energies, MDPI, vol. 12(10), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1822-:d:230867
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1822/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1822/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jung, Jaesung & Broadwater, Robert P., 2014. "Current status and future advances for wind speed and power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 762-777.
    2. Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
    3. Yuhui Shi, 2011. "An Optimization Algorithm Based on Brainstorming Process," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 2(4), pages 35-62, October.
    4. Yagang Zhang & Jingyun Yang & Kangcheng Wang & Zengping Wang, 2015. "Wind Power Prediction Considering Nonlinear Atmospheric Disturbances," Energies, MDPI, vol. 8(1), pages 1-15, January.
    5. Zhao, Weigang & Wei, Yi-Ming & Su, Zhongyue, 2016. "One day ahead wind speed forecasting: A resampling-based approach," Applied Energy, Elsevier, vol. 178(C), pages 886-901.
    6. Hu, Jianming & Wang, Jianzhou & Zeng, Guowei, 2013. "A hybrid forecasting approach applied to wind speed time series," Renewable Energy, Elsevier, vol. 60(C), pages 185-194.
    7. Li, Hongmin & Wang, Jianzhou & Lu, Haiyan & Guo, Zhenhai, 2018. "Research and application of a combined model based on variable weight for short term wind speed forecasting," Renewable Energy, Elsevier, vol. 116(PA), pages 669-684.
    8. Liu, Da & Niu, Dongxiao & Wang, Hui & Fan, Leilei, 2014. "Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm," Renewable Energy, Elsevier, vol. 62(C), pages 592-597.
    9. Xiao, Ling & Wang, Jianzhou & Dong, Yao & Wu, Jie, 2015. "Combined forecasting models for wind energy forecasting: A case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 271-288.
    10. Lei, Ma & Shiyan, Luan & Chuanwen, Jiang & Hongling, Liu & Yan, Zhang, 2009. "A review on the forecasting of wind speed and generated power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 915-920, May.
    11. Wang, Huai-zhi & Li, Gang-qiang & Wang, Gui-bin & Peng, Jian-chun & Jiang, Hui & Liu, Yi-tao, 2017. "Deep learning based ensemble approach for probabilistic wind power forecasting," Applied Energy, Elsevier, vol. 188(C), pages 56-70.
    12. Liu, Da & Wang, Jilong & Wang, Hui, 2015. "Short-term wind speed forecasting based on spectral clustering and optimised echo state networks," Renewable Energy, Elsevier, vol. 78(C), pages 599-608.
    13. Guo-Feng Fan & Li-Ling Peng & Xiangjun Zhao & Wei-Chiang Hong, 2017. "Applications of Hybrid EMD with PSO and GA for an SVR-Based Load Forecasting Model," Energies, MDPI, vol. 10(11), pages 1-22, October.
    14. Zhao, Jing & Guo, Zhen-Hai & Su, Zhong-Yue & Zhao, Zhi-Yuan & Xiao, Xia & Liu, Feng, 2016. "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, Elsevier, vol. 162(C), pages 808-826.
    15. Liu, Hui & Tian, Hong-qi & Liang, Xi-feng & Li, Yan-fei, 2015. "Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks," Applied Energy, Elsevier, vol. 157(C), pages 183-194.
    16. Yonglong Yan & Jian Li & David Wenzhong Gao, 2014. "Condition Parameter Modeling for Anomaly Detection in Wind Turbines," Energies, MDPI, vol. 7(5), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ru Hou & Yi Yang & Qingcong Yuan & Yanhua Chen, 2019. "Research and Application of Hybrid Wind-Energy Forecasting Models Based on Cuckoo Search Optimization," Energies, MDPI, vol. 12(19), pages 1-17, September.
    2. Ding, Lin & Bai, Yulong & Liu, Ming-De & Fan, Man-Hong & Yang, Jie, 2022. "Predicting short wind speed with a hybrid model based on a piecewise error correction method and Elman neural network," Energy, Elsevier, vol. 244(PA).
    3. Xin Zhao & Haikun Wei & Chenxi Li & Kanjian Zhang, 2020. "A Hybrid Nonlinear Forecasting Strategy for Short-Term Wind Speed," Energies, MDPI, vol. 13(7), pages 1-15, April.
    4. Xianxu Huo & Ke Xu & Ruixin Liu & Xi Chen & Zhanchun Li & Haiyun Yan, 2019. "A Structure-Reconfigurable Soft-Switching DC-DC Converter for Wide-Range Applications," Energies, MDPI, vol. 12(15), pages 1-25, July.
    5. Ming Pang & Lei Zhang & Yajun Zhang & Ao Zhou & Jianming Dou & Zhepeng Deng, 2022. "Ultra-Short-Term Wind Speed Forecasting Using the Hybrid Model of Subseries Reconstruction and Broad Learning System," Energies, MDPI, vol. 15(12), pages 1-21, June.
    6. Qin Chen & Yan Chen & Xingzhi Bai, 2020. "Deterministic and Interval Wind Speed Prediction Method in Offshore Wind Farm Considering the Randomness of Wind," Energies, MDPI, vol. 13(21), pages 1-23, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Zheng & Pei, Yan & Zareipour, Hamidreza & Chen, Niya, 2019. "A review and discussion of decomposition-based hybrid models for wind energy forecasting applications," Applied Energy, Elsevier, vol. 235(C), pages 939-953.
    2. Wang, Yun & Zou, Runmin & Liu, Fang & Zhang, Lingjun & Liu, Qianyi, 2021. "A review of wind speed and wind power forecasting with deep neural networks," Applied Energy, Elsevier, vol. 304(C).
    3. Liu, Hui & Chen, Chao, 2019. "Data processing strategies in wind energy forecasting models and applications: A comprehensive review," Applied Energy, Elsevier, vol. 249(C), pages 392-408.
    4. Song, Jingjing & Wang, Jianzhou & Lu, Haiyan, 2018. "A novel combined model based on advanced optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 215(C), pages 643-658.
    5. Yang, Zhongshan & Wang, Jian, 2018. "A combination forecasting approach applied in multistep wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Applied Energy, Elsevier, vol. 230(C), pages 1108-1125.
    6. Yang, Zhongshan & Wang, Jian, 2018. "A hybrid forecasting approach applied in wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Energy, Elsevier, vol. 160(C), pages 87-100.
    7. Lu, Peng & Ye, Lin & Zhao, Yongning & Dai, Binhua & Pei, Ming & Tang, Yong, 2021. "Review of meta-heuristic algorithms for wind power prediction: Methodologies, applications and challenges," Applied Energy, Elsevier, vol. 301(C).
    8. Rodrigues, Eugénio & Gomes, Álvaro & Gaspar, Adélio Rodrigues & Henggeler Antunes, Carlos, 2018. "Estimation of renewable energy and built environment-related variables using neural networks – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 959-988.
    9. Wei Sun & Mohan Liu & Yi Liang, 2015. "Wind Speed Forecasting Based on FEEMD and LSSVM Optimized by the Bat Algorithm," Energies, MDPI, vol. 8(7), pages 1-23, June.
    10. Wang, Jianzhou & Niu, Tong & Lu, Haiyan & Guo, Zhenhai & Yang, Wendong & Du, Pei, 2018. "An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms," Applied Energy, Elsevier, vol. 211(C), pages 492-512.
    11. Wang, Jian & Yang, Zhongshan, 2021. "Ultra-short-term wind speed forecasting using an optimized artificial intelligence algorithm," Renewable Energy, Elsevier, vol. 171(C), pages 1418-1435.
    12. Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
    13. Liu, Jinqiang & Wang, Xiaoru & Lu, Yun, 2017. "A novel hybrid methodology for short-term wind power forecasting based on adaptive neuro-fuzzy inference system," Renewable Energy, Elsevier, vol. 103(C), pages 620-629.
    14. Zhao, Yongning & Ye, Lin & Li, Zhi & Song, Xuri & Lang, Yansheng & Su, Jian, 2016. "A novel bidirectional mechanism based on time series model for wind power forecasting," Applied Energy, Elsevier, vol. 177(C), pages 793-803.
    15. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    16. Yuansheng Huang & Shijian Liu & Lei Yang, 2018. "Wind Speed Forecasting Method Using EEMD and the Combination Forecasting Method Based on GPR and LSTM," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    17. Wang, Yun & Xu, Houhua & Zou, Runmin & Zhang, Lingjun & Zhang, Fan, 2022. "A deep asymmetric Laplace neural network for deterministic and probabilistic wind power forecasting," Renewable Energy, Elsevier, vol. 196(C), pages 497-517.
    18. Niu, Xinsong & Wang, Jiyang, 2019. "A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting," Applied Energy, Elsevier, vol. 241(C), pages 519-539.
    19. Ziel, Florian & Croonenbroeck, Carsten & Ambach, Daniel, 2016. "Forecasting wind power – Modeling periodic and non-linear effects under conditional heteroscedasticity," Applied Energy, Elsevier, vol. 177(C), pages 285-297.
    20. Yimei Wang & Yongqian Liu & Li Li & David Infield & Shuang Han, 2018. "Short-Term Wind Power Forecasting Based on Clustering Pre-Calculated CFD Method," Energies, MDPI, vol. 11(4), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1822-:d:230867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.