A Comparative Analysis on the Variability of Temperature Thresholds through Time for Wind Turbine Generators Using Normal Behaviour Modelling
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Kwok L. Tsui & Nan Chen & Qiang Zhou & Yizhen Hai & Wenbin Wang, 2015. "Prognostics and Health Management: A Review on Data Driven Approaches," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-17, May.
- Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
- Yonglong Yan & Jian Li & David Wenzhong Gao, 2014. "Condition Parameter Modeling for Anomaly Detection in Wind Turbines," Energies, MDPI, vol. 7(5), pages 1-17, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Alessandro Murgia & Robbert Verbeke & Elena Tsiporkova & Ludovico Terzi & Davide Astolfi, 2023. "Discussion on the Suitability of SCADA-Based Condition Monitoring for Wind Turbine Fault Diagnosis through Temperature Data Analysis," Energies, MDPI, vol. 16(2), pages 1-20, January.
- Davide Astolfi & Ravi Pandit & Andrea Lombardi & Ludovico Terzi, 2022. "Multivariate Data-Driven Models for Wind Turbine Power Curves including Sub-Component Temperatures," Energies, MDPI, vol. 16(1), pages 1-18, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alan Turnbull & Conor McKinnon & James Carrol & Alasdair McDonald, 2022. "On the Development of Offshore Wind Turbine Technology: An Assessment of Reliability Rates and Fault Detection Methods in a Changing Market," Energies, MDPI, vol. 15(9), pages 1-20, April.
- Alan Turnbull & James Carroll, 2021. "Cost Benefit of Implementing Advanced Monitoring and Predictive Maintenance Strategies for Offshore Wind Farms," Energies, MDPI, vol. 14(16), pages 1-14, August.
- Reddy, Sohail R., 2021. "A machine learning approach for modeling irregular regions with multiple owners in wind farm layout design," Energy, Elsevier, vol. 220(C).
- Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
- Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
- Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
- Peng Sun & Jian Li & Junsheng Chen & Xiao Lei, 2016. "A Short-Term Outage Model of Wind Turbines with Doubly Fed Induction Generators Based on Supervisory Control and Data Acquisition Data," Energies, MDPI, vol. 9(11), pages 1-21, October.
- Ali Rohan, 2022. "Holistic Fault Detection and Diagnosis System in Imbalanced, Scarce, Multi-Domain (ISMD) Data Setting for Component-Level Prognostics and Health Management (PHM)," Mathematics, MDPI, vol. 10(12), pages 1-22, June.
- Lei Fu & Tiantian Zhu & Kai Zhu & Yiling Yang, 2019. "Condition Monitoring for the Roller Bearings of Wind Turbines under Variable Working Conditions Based on the Fisher Score and Permutation Entropy," Energies, MDPI, vol. 12(16), pages 1-20, August.
- Ma, Jie & Cai, Li & Liao, Guobo & Yin, Hongpeng & Si, Xiaosheng & Zhang, Peng, 2023. "A multi-phase Wiener process-based degradation model with imperfect maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
- Ti, Zilong & Deng, Xiao Wei & Zhang, Mingming, 2021. "Artificial Neural Networks based wake model for power prediction of wind farm," Renewable Energy, Elsevier, vol. 172(C), pages 618-631.
- Deng, Wanru & Liu, Liqin & Dai, Yuanjun & Wu, Haitao & Yuan, Zhiming, 2024. "A prediction method for blade deformations of large-scale FVAWTs using dynamics theory and machine learning techniques," Energy, Elsevier, vol. 304(C).
- Lu, Xuefei & Baraldi, Piero & Zio, Enrico, 2020. "A data-driven framework for identifying important components in complex systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
- Phong B. Dao, 2021. "A CUSUM-Based Approach for Condition Monitoring and Fault Diagnosis of Wind Turbines," Energies, MDPI, vol. 14(11), pages 1-19, June.
- Kong, Yun & Han, Qinkai & Chu, Fulei & Qin, Yechen & Dong, Mingming, 2023. "Spectral ensemble sparse representation classification approach for super-robust health diagnostics of wind turbine planetary gearbox," Renewable Energy, Elsevier, vol. 219(P1).
- Meng Li & Shuangxin Wang, 2019. "Dynamic Fault Monitoring of Pitch System in Wind Turbines using Selective Ensemble Small-World Neural Networks," Energies, MDPI, vol. 12(17), pages 1-20, August.
- Jorge Maldonado-Correa & Sergio Martín-Martínez & Estefanía Artigao & Emilio Gómez-Lázaro, 2020. "Using SCADA Data for Wind Turbine Condition Monitoring: A Systematic Literature Review," Energies, MDPI, vol. 13(12), pages 1-21, June.
- Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
- Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
- Conor McKinnon & Alan Turnbull & Sofia Koukoura & James Carroll & Alasdair McDonald, 2020. "Effect of Time History on Normal Behaviour Modelling Using SCADA Data to Predict Wind Turbine Failures," Energies, MDPI, vol. 13(18), pages 1-19, September.
More about this item
Keywords
wind turbine; SCADA; machine learning; temperature; modelling; threshold; alarm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:14:p:5298-:d:868252. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.