IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1195-d108062.html
   My bibliography  Save this article

A New Method for Evaluating Moisture Content and Aging Degree of Transformer Oil-Paper Insulation Based on Frequency Domain Spectroscopy

Author

Listed:
  • Guoqiang Xia

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Guangning Wu

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Bo Gao

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Haojie Yin

    (School of Electrical Engineering, Southwest Jiaotong University, Chengdu 610031, China)

  • Feibao Yang

    (Energy China HEPDI, Changsha 410007, China)

Abstract

The condition of oil-paper insulation is closely related to the life expectancy of a transformer. The accurate results of oil-paper have not been obtained due to the impact of influencing factors. Therefore, in order to improve the evaluation accuracy of oil-paper insulation, in this paper, oil-paper samples which were prepared with different aging and moisture content were analyzed by frequency domain spectroscopy (FDS). Results show that when the moisture content is less than 2%, the range of 10 1 ~10 3 Hz is mainly affected by moisture and aging has little effect. However, with the increase of moisture content, the effect of aging degree on this band became increasingly prominent. S m , which represents the integral value from 10 −1 to 10 −3 Hz, and S DP , which represents the integral value from 10 1 to 10 3 Hz, were extracted as characteristic parameters of moisture content and aging degree respectively. Compensation factors γ which represents the influence ratio of moisture on S DP and φ which represents the influence ratio of aging on S m were introduced to compensate for the influence of moisture content and aging degree on characteristics respectively. Then, a new method was proposed to evaluate the condition of oil-paper based on compensation factors. Through this method, the influence in characteristics can be eliminated by the obtained actual compensation factors, thus distinguishing the internal influence between moisture content and aging degree on FDS. Finally, this method was verified by field test.

Suggested Citation

  • Guoqiang Xia & Guangning Wu & Bo Gao & Haojie Yin & Feibao Yang, 2017. "A New Method for Evaluating Moisture Content and Aging Degree of Transformer Oil-Paper Insulation Based on Frequency Domain Spectroscopy," Energies, MDPI, vol. 10(8), pages 1-15, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1195-:d:108062
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1195/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1195/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Issouf Fofana & Yazid Hadjadj, 2016. "Electrical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers," Energies, MDPI, vol. 9(9), pages 1-26, August.
    2. Youyuan Wang & Senlian Gong & Stanislaw Grzybowski, 2011. "Reliability Evaluation Method for Oil–Paper Insulation in Power Transformers," Energies, MDPI, vol. 4(9), pages 1-14, September.
    3. Janvier Sylvestre N’cho & Issouf Fofana & Yazid Hadjadj & Abderrahmane Beroual, 2016. "Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers," Energies, MDPI, vol. 9(5), pages 1-29, May.
    4. Youyuan Wang & Kun Xiao & Bijun Chen & Yuanlong Li, 2015. "Study of the Impact of Initial Moisture Content in Oil Impregnated Insulation Paper on Thermal Aging Rate of Condenser Bushing," Energies, MDPI, vol. 8(12), pages 1-13, December.
    5. Jingxin Zou & Weigen Chen & Fu Wan & Zhou Fan & Lingling Du, 2016. "Raman Spectral Characteristics of Oil-Paper Insulation and Its Application to Ageing Stage Assessment of Oil-Immersed Transformers," Energies, MDPI, vol. 9(11), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrew Adewunmi Adekunle & Samson Okikiola Oparanti & Issouf Fofana, 2023. "Performance Assessment of Cellulose Paper Impregnated in Nanofluid for Power Transformer Insulation Application: A Review," Energies, MDPI, vol. 16(4), pages 1-32, February.
    2. Feng Yang & Lin Du & Lijun Yang & Chao Wei & Youyuan Wang & Liman Ran & Peng He, 2018. "A Parameterization Approach for the Dielectric Response Model of Oil Paper Insulation Using FDS Measurements," Energies, MDPI, vol. 11(3), pages 1-17, March.
    3. Bo Gao & Rui Yu & Guangcai Hu & Cheng Liu & Xin Zhuang & Peng Zhou, 2019. "Development Processes of Surface Trucking and Partial Discharge of Pressboards Immersed in Mineral Oil: Effect of Tip Curvatures," Energies, MDPI, vol. 12(3), pages 1-14, February.
    4. Grzegorz Dombek & Zbigniew Nadolny & Piotr Przybylek & Radoslaw Lopatkiewicz & Agnieszka Marcinkowska & Lukasz Druzynski & Tomasz Boczar & Andrzej Tomczewski, 2020. "Effect of Moisture on the Thermal Conductivity of Cellulose and Aramid Paper Impregnated with Various Dielectric Liquids," Energies, MDPI, vol. 13(17), pages 1-17, August.
    5. Jiacheng Xie & Ming Dong & Boning Yu & Yizhuo Hu & Kaige Yang & Changjie Xia, 2020. "Physical Model for Frequency Domain Spectroscopy of Oil–Paper Insulation in a Wide Temperature Range by a Novel Analysis Approach," Energies, MDPI, vol. 13(17), pages 1-17, September.
    6. Piotr Przybylek & Hubert Moranda & Hanna Moscicka-Grzesiak & Dominika Szczesniak, 2019. "Application of Synthetic Ester for Drying Distribution Transformer Insulation—The Influence of Cellulose Thickness on Drying Efficiency," Energies, MDPI, vol. 12(20), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    2. Hanbo Zheng & Jiefeng Liu & Yiyi Zhang & Yijie Ma & Yang Shen & Xiaochen Zhen & Zilai Chen, 2018. "Effectiveness Analysis and Temperature Effect Mechanism on Chemical and Electrical-Based Transformer Insulation Diagnostic Parameters Obtained from PDC Data," Energies, MDPI, vol. 11(1), pages 1-17, January.
    3. Jiefeng Liu & Hanbo Zheng & Yiyi Zhang & Hua Wei & Ruijin Liao, 2017. "Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement," Energies, MDPI, vol. 10(10), pages 1-16, October.
    4. Hongyan Nie & Xinlao Wei & Yonghong Wang & Qingguo Chen, 2018. "A Study of Electrical Aging of the Turn-to-Turn Oil-Paper Insulation in Transformers with a Step-Stress Method," Energies, MDPI, vol. 11(12), pages 1-16, November.
    5. Janvier Sylvestre N’cho & Issouf Fofana, 2020. "Review of Fiber Optic Diagnostic Techniques for Power Transformers," Energies, MDPI, vol. 13(7), pages 1-24, April.
    6. Siti Rosilah Arsad & Pin Jern Ker & Md. Zaini Jamaludin & Pooi Ying Choong & Hui Jing Lee & Vimal Angela Thiviyanathan & Young Zaidey Yang Ghazali, 2023. "Water Content in Transformer Insulation System: A Review on the Detection and Quantification Methods," Energies, MDPI, vol. 16(4), pages 1-31, February.
    7. Andrew Adewunmi Adekunle & Samson Okikiola Oparanti & Issouf Fofana, 2023. "Performance Assessment of Cellulose Paper Impregnated in Nanofluid for Power Transformer Insulation Application: A Review," Energies, MDPI, vol. 16(4), pages 1-32, February.
    8. Jiake Fang & Hanbo Zheng & Jiefeng Liu & Junhui Zhao & Yiyi Zhang & Ke Wang, 2018. "A Transformer Fault Diagnosis Model Using an Optimal Hybrid Dissolved Gas Analysis Features Subset with Improved Social Group Optimization-Support Vector Machine Classifier," Energies, MDPI, vol. 11(8), pages 1-18, July.
    9. Chenmeng Zhang & Kailin Zhao & Shijun Xie & Can Hu & Yu Zhang & Nanxi Jiang, 2021. "Research on the Time-Domain Dielectric Response of Multiple Impulse Voltage Aging Oil-Film Dielectrics," Energies, MDPI, vol. 14(7), pages 1-15, April.
    10. Konrad Kierczynski & Przemyslaw Rogalski & Vitalii Bondariev & Pawel Okal & Daniel Korenciak, 2022. "Research on the Influence of Moisture Exchange between Oil and Cellulose on the Electrical Parameters of the Insulating Oil in Power Transformers," Energies, MDPI, vol. 15(20), pages 1-15, October.
    11. Przemyslaw Goscinski & Zbigniew Nadolny & Andrzej Tomczewski & Ryszard Nawrowski & Tomasz Boczar, 2023. "The Influence of Heat Transfer Coefficient α of Insulating Liquids on Power Transformer Cooling Systems," Energies, MDPI, vol. 16(6), pages 1-15, March.
    12. Jingxin Zou & Weigen Chen & Fu Wan & Zhou Fan & Lingling Du, 2016. "Raman Spectral Characteristics of Oil-Paper Insulation and Its Application to Ageing Stage Assessment of Oil-Immersed Transformers," Energies, MDPI, vol. 9(11), pages 1-14, November.
    13. Wojciech Sikorski, 2018. "Active Dielectric Window: A New Concept of Combined Acoustic Emission and Electromagnetic Partial Discharge Detector for Power Transformers," Energies, MDPI, vol. 12(1), pages 1-27, December.
    14. Grzegorz Dombek & Zbigniew Nadolny & Piotr Przybylek & Radoslaw Lopatkiewicz & Agnieszka Marcinkowska & Lukasz Druzynski & Tomasz Boczar & Andrzej Tomczewski, 2020. "Effect of Moisture on the Thermal Conductivity of Cellulose and Aramid Paper Impregnated with Various Dielectric Liquids," Energies, MDPI, vol. 13(17), pages 1-17, August.
    15. Amidou Betie & Fethi Meghnefi & Issouf Fofana & Zie Yeo, 2018. "Modeling the Insulation Paper Drying Process from Thermogravimetric Analyses," Energies, MDPI, vol. 11(3), pages 1-15, February.
    16. Pawel Zukowski & Przemyslaw Rogalski & Konrad Kierczynski & Tomasz N. Koltunowicz, 2021. "Precise Measurements of the Temperature Influence on the Complex Permittivity of Power Transformers Moistened Paper-Oil Insulation," Energies, MDPI, vol. 14(18), pages 1-24, September.
    17. Qing Yang & Peiyu Su & Yong Chen, 2017. "Comparison of Impulse Wave and Sweep Frequency Response Analysis Methods for Diagnosis of Transformer Winding Faults," Energies, MDPI, vol. 10(4), pages 1-16, March.
    18. Lei Peng & Qiang Fu & Yaohong Zhao & Yihua Qian & Tiansheng Chen & Shengping Fan, 2018. "A Non-Destructive Optical Method for the DP Measurement of Paper Insulation Based on the Free Fibers in Transformer Oil," Energies, MDPI, vol. 11(4), pages 1-9, March.
    19. Leila Safiddine & Hadj-Ziane Zafour & Ungarala Mohan Rao & Issouf Fofana, 2019. "Regeneration of Transformer Insulating Fluids Using Membrane Separation Technology," Energies, MDPI, vol. 12(3), pages 1-13, January.
    20. Kakou D. Kouassi & Issouf Fofana & Ladji Cissé & Yazid Hadjadj & Kouba M. Lucia Yapi & K. Ambroise Diby, 2018. "Impact of Low Molecular Weight Acids on Oil Impregnated Paper Insulation Degradation," Energies, MDPI, vol. 11(6), pages 1-13, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1195-:d:108062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.