IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1176-d107805.html
   My bibliography  Save this article

Risk Assessment of Micro Energy Grid Protection Layers

Author

Listed:
  • Hossam A. Gabbar

    (Faculty of Energy Systems and Nuclear Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1H7K4, Canada
    Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1H7K4, Canada)

  • Yahya Koraz

    (Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON L1H7K4, Canada)

Abstract

Micro energy grids (MEGs) are used extensively to meet the combined electricity, heating, and cooling energy demands for all types of customers. This paper develops a hazard matrix for a MEG and utilizes two advanced risk modeling approaches (fault tree and layer of protection analysis ( LOPA )) for MEGs’ risk analysis. A number of independent protection layers (IPLs) have been proposed to achieve a resilient MEG, hence increasing its safety integrity level (SIL). IPLs are applied using co-generators and thermal energy storage (TES) techniques to minimize the hazards of system failure, increase efficiency, and minimize greenhouse gas emissions. The proposed modeling and risk assessment approach aims to design a resilient MEG, which can utilize those potentials efficiently. In addition, an energy risk analysis has been applied on each MEGs’ physical domains such as electrical, thermal, mechanical and chemical. The concurrent objectives achieve an increased resiliency, reduced emissions, and sustained economy.

Suggested Citation

  • Hossam A. Gabbar & Yahya Koraz, 2017. "Risk Assessment of Micro Energy Grid Protection Layers," Energies, MDPI, vol. 10(8), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1176-:d:107805
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1176/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1176/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abbasi, Ali Reza & Seifi, Ali Reza, 2015. "Considering cost and reliability in electrical and thermal distribution networks reinforcement planning," Energy, Elsevier, vol. 84(C), pages 25-35.
    2. A. Terry Bahill & William J. Karnavas, 2000. "Risk Analysis of a pinewood derby: A case study," Systems Engineering, John Wiley & Sons, vol. 3(3), pages 143-155.
    3. Sergio Saponara, 2016. "Distributed Measuring System for Predictive Diagnosis of Uninterruptible Power Supplies in Safety-Critical Applications," Energies, MDPI, vol. 9(5), pages 1-18, April.
    4. Guopeng Song & Hao Chen & Bo Guo, 2014. "A Layered Fault Tree Model for Reliability Evaluation of Smart Grids," Energies, MDPI, vol. 7(8), pages 1-23, July.
    5. Schroeder, Andreas, 2011. "Modeling storage and demand management in power distribution grids," Applied Energy, Elsevier, vol. 88(12), pages 4700-4712.
    6. Andrea Chaves & A. Terry Bahill, 2014. "Comparison of Risk Analysis Approaches and a Case Study of the Risk of Incorporating Solar Photovoltaic Systems into a Commercial Electric Power Grid," Systems Engineering, John Wiley & Sons, vol. 17(1), pages 89-111, March.
    7. Piesik, E. & Śliwiński, M. & Barnert, T., 2016. "Determining and verifying the safety integrity level of the safety instrumented systems with the uncertainty and security aspects," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 259-272.
    8. Wei Deng & Wei Pei & Ziqi Shen & Zhenxing Zhao & Hui Qu, 2015. "Adaptive Micro-Grid Operation Based on IEC 61850," Energies, MDPI, vol. 8(5), pages 1-21, May.
    9. Zio, E. & Golea, L.R., 2012. "Analyzing the topological, electrical and reliability characteristics of a power transmission system for identifying its critical elements," Reliability Engineering and System Safety, Elsevier, vol. 101(C), pages 67-74.
    10. Liu, Zengkai & Liu, Yonghong & Zhang, Dawei & Cai, Baoping & Zheng, Chao, 2015. "Fault diagnosis for a solar assisted heat pump system under incomplete data and expert knowledge," Energy, Elsevier, vol. 87(C), pages 41-48.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jin-peng Liu & Yu Tian & Hao Zheng & Tao Yi, 2019. "Research on Dynamic Evolution Simulation and Sustainability Evaluation Model of China’s Power Supply and Demand System," Energies, MDPI, vol. 12(10), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    2. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    3. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    4. Hartmann, Bálint & Divényi, Dániel & Vokony, István, 2018. "Evaluation of business possibilities of energy storage at commercial and industrial consumers – A case study," Applied Energy, Elsevier, vol. 222(C), pages 59-66.
    5. Hanif, Sarmad & Alam, M.J.E. & Roshan, Kini & Bhatti, Bilal A. & Bedoya, Juan C., 2022. "Multi-service battery energy storage system optimization and control," Applied Energy, Elsevier, vol. 311(C).
    6. Huiru Zhao & Nana Li, 2016. "Performance Evaluation for Sustainability of Strong Smart Grid by Using Stochastic AHP and Fuzzy TOPSIS Methods," Sustainability, MDPI, vol. 8(2), pages 1-22, January.
    7. Badami, Marco & Fonti, Antonio & Carpignano, Andrea & Grosso, Daniele, 2018. "Design of district heating networks through an integrated thermo-fluid dynamics and reliability modelling approach," Energy, Elsevier, vol. 144(C), pages 826-838.
    8. Allard, Stéphane & Debusschere, Vincent & Mima, Silvana & Quoc, Tuan Tran & Hadjsaid, Nouredine & Criqui, Patrick, 2020. "Considering distribution grids and local flexibilities in the prospective development of the European power system by 2050," Applied Energy, Elsevier, vol. 270(C).
    9. Cai, Baoping & Liu, Yonghong & Ma, Yunpeng & Huang, Lei & Liu, Zengkai, 2015. "A framework for the reliability evaluation of grid-connected photovoltaic systems in the presence of intermittent faults," Energy, Elsevier, vol. 93(P2), pages 1308-1320.
    10. Kavousi-Fard, Abdollah & Abbasi, Alireza & Rostami, Mohammad-Amin & Khosravi, Abbas, 2015. "Optimal distribution feeder reconfiguration for increasing the penetration of plug-in electric vehicles and minimizing network costs," Energy, Elsevier, vol. 93(P2), pages 1693-1703.
    11. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)," Energy, Elsevier, vol. 55(C), pages 1044-1054.
    12. Wang, Yanhui & Bi, Lifeng & Lin, Shuai & Li, Man & Shi, Hao, 2017. "A complex network-based importance measure for mechatronics systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 180-198.
    13. Poudineh, Rahmatallah & Jamasb, Tooraj, 2014. "Distributed generation, storage, demand response and energy efficiency as alternatives to grid capacity enhancement," Energy Policy, Elsevier, vol. 67(C), pages 222-231.
    14. Rajeev, T. & Ashok, S., 2015. "Dynamic load-shifting program based on a cloud computing framework to support the integration of renewable energy sources," Applied Energy, Elsevier, vol. 146(C), pages 141-149.
    15. Brkovic, Aleksandar & Gajic, Dragoljub & Gligorijevic, Jovan & Savic-Gajic, Ivana & Georgieva, Olga & Di Gennaro, Stefano, 2017. "Early fault detection and diagnosis in bearings for more efficient operation of rotating machinery," Energy, Elsevier, vol. 136(C), pages 63-71.
    16. Yin, Yu & Liu, Jicheng, 2022. "Risk assessment of photovoltaic - Energy storage utilization project based on improved Cloud-TODIM in China," Energy, Elsevier, vol. 253(C).
    17. Zheng, Junjun & Okamura, Hiroyuki & Pang, Taoming & Dohi, Tadashi, 2021. "Availability importance measures of components in smart electric power grid systems," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    18. Andrea Chaves & A. Terry Bahill, 2014. "Comparison of Risk Analysis Approaches and a Case Study of the Risk of Incorporating Solar Photovoltaic Systems into a Commercial Electric Power Grid," Systems Engineering, John Wiley & Sons, vol. 17(1), pages 89-111, March.
    19. Fang, Xinli & Yang, Qiang & Wang, Jianhui & Yan, Wenjun, 2016. "Coordinated dispatch in multiple cooperative autonomous islanded microgrids," Applied Energy, Elsevier, vol. 162(C), pages 40-48.
    20. Borge-Diez, David & Colmenar-Santos, Antonio & Pérez-Molina, Clara & López-Rey, África, 2015. "Geothermal source heat pumps under energy services companies finance scheme to increase energy efficiency and production in stockbreeding facilities," Energy, Elsevier, vol. 88(C), pages 821-836.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1176-:d:107805. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.