IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i7p1063-d105581.html
   My bibliography  Save this article

Adaptive Model Predictive Control-Based Energy Management for Semi-Active Hybrid Energy Storage Systems on Electric Vehicles

Author

Listed:
  • Fang Zhou

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Feng Xiao

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Cheng Chang

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Yulong Shao

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

  • Chuanxue Song

    (State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130022, China)

Abstract

This paper deals with the energy management strategy (EMS) for an on-board semi-active hybrid energy storage system (HESS) composed of a Li-ion battery (LiB) and ultracapacitor (UC). Considering both the nonlinearity of the semi-active structure and driving condition uncertainty, while ensuring HESS operation within constraints, an adaptive model predictive control (AMPC) method is adopted to design the EMS. Within AMPC, LiB Ah-throughput is minimized online to extend its life. The proposed AMPC determines the optimal control action by solving a quadratic programming (QP) problem at each control interval, in which the QP solver receives control-oriented model matrices and current states for calculation. The control-oriented model is constructed by linearizing HESS online to approximate the original nonlinear model. Besides, a time-varying Kalman filter (TVKF) is introduced as the estimator to improve the state estimation accuracy. At the same time, sampling time, prediction horizon and scaling factors of AMPC are determined through simulation. Compared with standard MPC, TVKF reduces the estimation error by 1~3 orders of magnitude, and AMPC reduces LiB Ah-throughput by 4.3% under Urban Dynamometer Driving Schedule (UDDS) driving cycle condition, indicating superior model adaptivity. Furthermore, LiB Ah-throughput of AMPC under various classical driving cycles differs from that of dynamic programming by an average of 6.5% and reduces by an average of 10.6% compared to rule-based strategy of LiB Ah-throughput, showing excellent adaptation to driving condition uncertainty.

Suggested Citation

  • Fang Zhou & Feng Xiao & Cheng Chang & Yulong Shao & Chuanxue Song, 2017. "Adaptive Model Predictive Control-Based Energy Management for Semi-Active Hybrid Energy Storage Systems on Electric Vehicles," Energies, MDPI, vol. 10(7), pages 1-21, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1063-:d:105581
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/7/1063/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/7/1063/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Shuo & Xiong, Rui & Sun, Fengchun, 2017. "Model predictive control for power management in a plug-in hybrid electric vehicle with a hybrid energy storage system," Applied Energy, Elsevier, vol. 185(P2), pages 1654-1662.
    2. Saeed Sepasi & Leon R. Roose & Marc M. Matsuura, 2015. "Extended Kalman Filter with a Fuzzy Method for Accurate Battery Pack State of Charge Estimation," Energies, MDPI, vol. 8(6), pages 1-17, June.
    3. Song, Ziyou & Hofmann, Heath & Li, Jianqiu & Han, Xuebing & Ouyang, Minggao, 2015. "Optimization for a hybrid energy storage system in electric vehicles using dynamic programing approach," Applied Energy, Elsevier, vol. 139(C), pages 151-162.
    4. Zhang, Pei & Yan, Fuwu & Du, Changqing, 2015. "A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 88-104.
    5. Hongwen He & Rui Xiong & Jinxin Fan, 2011. "Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach," Energies, MDPI, vol. 4(4), pages 1-17, March.
    6. Kuperman, Alon & Aharon, Ilan, 2011. "Battery-ultracapacitor hybrids for pulsed current loads: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 981-992, February.
    7. Hu, Xiaosong & Johannesson, Lars & Murgovski, Nikolce & Egardt, Bo, 2015. "Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus," Applied Energy, Elsevier, vol. 137(C), pages 913-924.
    8. Qiao Zhang & Weiwen Deng, 2016. "An Adaptive Energy Management System for Electric Vehicles Based on Driving Cycle Identification and Wavelet Transform," Energies, MDPI, vol. 9(5), pages 1-24, May.
    9. Bedatri Moulik & Dirk Söffker, 2016. "Online Power Management with Embedded Offline-Optimized Parameters for a Three-Source Hybrid Powertrain with an Experimental Emulation Application," Energies, MDPI, vol. 9(6), pages 1-33, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xingyue Jiang & Jianjun Hu & Meixia Jia & Yong Zheng, 2018. "Parameter Matching and Instantaneous Power Allocation for the Hybrid Energy Storage System of Pure Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, July.
    2. Vishnu P. Sidharthan & Yashwant Kashyap & Panagiotis Kosmopoulos, 2023. "Adaptive-Energy-Sharing-Based Energy Management Strategy of Hybrid Sources in Electric Vehicles," Energies, MDPI, vol. 16(3), pages 1-26, January.
    3. Fengqi Zhang & Lihua Wang & Serdar Coskun & Hui Pang & Yahui Cui & Junqiang Xi, 2020. "Energy Management Strategies for Hybrid Electric Vehicles: Review, Classification, Comparison, and Outlook," Energies, MDPI, vol. 13(13), pages 1-35, June.
    4. Bin Tang & Di Zhang & Haobin Jiang & Yinqiu Huang, 2020. "Optimization of Energy Management Strategy for the EPS with Hybrid Power Supply Based on PSO Algorithm," Energies, MDPI, vol. 13(2), pages 1-13, January.
    5. Mahammad A. Hannan & Mohammad M. Hoque & Pin J. Ker & Rawshan A. Begum & Azah Mohamed, 2017. "Charge Equalization Controller Algorithm for Series-Connected Lithium-Ion Battery Storage Systems: Modeling and Applications," Energies, MDPI, vol. 10(9), pages 1-20, September.
    6. Jorge Nájera & Pablo Moreno-Torres & Marcos Lafoz & Rosa M. De Castro & Jaime R. Arribas, 2017. "Approach to Hybrid Energy Storage Systems Dimensioning for Urban Electric Buses Regarding Efficiency and Battery Aging," Energies, MDPI, vol. 10(11), pages 1-16, October.
    7. Shun-Chung Wang & Chun-Yu Liu & Yi-Hua Liu, 2018. "A Fast Equalizer with Adaptive Balancing Current Control," Energies, MDPI, vol. 11(5), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Bin & Xu, Jun & Cao, Binggang & Ning, Bo, 2017. "Adaptive mode switch strategy based on simulated annealing optimization of a multi-mode hybrid energy storage system for electric vehicles," Applied Energy, Elsevier, vol. 194(C), pages 596-608.
    2. da Silva, Samuel Filgueira & Eckert, Jony Javorski & Corrêa, Fernanda Cristina & Silva, Fabrício Leonardo & Silva, Ludmila C.A. & Dedini, Franco Giuseppe, 2022. "Dual HESS electric vehicle powertrain design and fuzzy control based on multi-objective optimization to increase driving range and battery life cycle," Applied Energy, Elsevier, vol. 324(C).
    3. Laird, Cary & Kang, Ziliang & James, Kai A. & Alleyne, Andrew G., 2022. "Framework for integrated plant and control optimization of electro-thermal systems: An energy storage system case study," Energy, Elsevier, vol. 258(C).
    4. Trovão, João P. & Silva, Mário A. & Antunes, Carlos Henggeler & Dubois, Maxime R., 2017. "Stability enhancement of the motor drive DC input voltage of an electric vehicle using on-board hybrid energy storage systems," Applied Energy, Elsevier, vol. 205(C), pages 244-259.
    5. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Ruan, Haijun & Jiang, Zhihao, 2021. "Adaptive energy management of a battery-supercapacitor energy storage system for electric vehicles based on flexible perception and neural network fitting," Applied Energy, Elsevier, vol. 292(C).
    6. Xingyue Jiang & Jianjun Hu & Meixia Jia & Yong Zheng, 2018. "Parameter Matching and Instantaneous Power Allocation for the Hybrid Energy Storage System of Pure Electric Vehicles," Energies, MDPI, vol. 11(8), pages 1-18, July.
    7. Chaofeng Pan & Yanyan Liang & Long Chen & Liao Chen, 2019. "Optimal Control for Hybrid Energy Storage Electric Vehicle to Achieve Energy Saving Using Dynamic Programming Approach," Energies, MDPI, vol. 12(4), pages 1-19, February.
    8. Jiajun Liu & Tianxu Jin & Li Liu & Yajue Chen & Kun Yuan, 2017. "Multi-Objective Optimization of a Hybrid ESS Based on Optimal Energy Management Strategy for LHDs," Sustainability, MDPI, vol. 9(10), pages 1-18, October.
    9. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    10. Jiang, Hongliang & Xu, Liangfei & Li, Jianqiu & Hu, Zunyan & Ouyang, Minggao, 2019. "Energy management and component sizing for a fuel cell/battery/supercapacitor hybrid powertrain based on two-dimensional optimization algorithms," Energy, Elsevier, vol. 177(C), pages 386-396.
    11. Wang, Chun & Yang, Ruixin & Yu, Quanqing, 2019. "Wavelet transform based energy management strategies for plug-in hybrid electric vehicles considering temperature uncertainty," Applied Energy, Elsevier, vol. 256(C).
    12. Bi, Jun & Zhang, Ting & Yu, Haiyang & Kang, Yanqiong, 2016. "State-of-health estimation of lithium-ion battery packs in electric vehicles based on genetic resampling particle filter," Applied Energy, Elsevier, vol. 182(C), pages 558-568.
    13. Hu, Jie & Liu, Di & Du, Changqing & Yan, Fuwu & Lv, Chen, 2020. "Intelligent energy management strategy of hybrid energy storage system for electric vehicle based on driving pattern recognition," Energy, Elsevier, vol. 198(C).
    14. Zhu, Tao & Wills, Richard G.A. & Lot, Roberto & Kong, Xiaodan & Yan, Xingda, 2021. "Optimal sizing and sensitivity analysis of a battery-supercapacitor energy storage system for electric vehicles," Energy, Elsevier, vol. 221(C).
    15. Wieczorek, Maciej & Lewandowski, Mirosław, 2017. "A mathematical representation of an energy management strategy for hybrid energy storage system in electric vehicle and real time optimization using a genetic algorithm," Applied Energy, Elsevier, vol. 192(C), pages 222-233.
    16. Xiao, B. & Ruan, J. & Yang, W. & Walker, P.D. & Zhang, N., 2021. "A review of pivotal energy management strategies for extended range electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    17. Oh, Ki-Yong & Epureanu, Bogdan I., 2016. "Characterization and modeling of the thermal mechanics of lithium-ion battery cells," Applied Energy, Elsevier, vol. 178(C), pages 633-646.
    18. Xiangwei Guo & Longyun Kang & Yuan Yao & Zhizhen Huang & Wenbiao Li, 2016. "Joint Estimation of the Electric Vehicle Power Battery State of Charge Based on the Least Squares Method and the Kalman Filter Algorithm," Energies, MDPI, vol. 9(2), pages 1-16, February.
    19. Wei, Shouyang & Zou, Yuan & Sun, Fengchun & Christopher, Onder, 2017. "A pseudospectral method for solving optimal control problem of a hybrid tracked vehicle," Applied Energy, Elsevier, vol. 194(C), pages 588-595.
    20. Jiajun Liu & Huachao Dong & Tianxu Jin & Li Liu & Babak Manouchehrinia & Zuomin Dong, 2018. "Optimization of Hybrid Energy Storage Systems for Vehicles with Dynamic On-Off Power Loads Using a Nested Formulation," Energies, MDPI, vol. 11(10), pages 1-25, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:1063-:d:105581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.