IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i6p802-d101344.html
   My bibliography  Save this article

Transmission Power and Antenna Allocation for Energy-Efficient RF Energy Harvesting Networks with Massive MIMO

Author

Listed:
  • Yu Min Hwang

    (Department of Wireless Communications Engineering, Kwangwoon University, Seoul 01897, Korea)

  • Ji Ho Park

    (Flight Control Group, Korean Air R&D Center, Daejeon 461, Korea)

  • Yoan Shin

    (School of Electronic Engineering, Soongsil University, Seoul 06978, Korea)

  • Jin Young Kim

    (Department of Wireless Communications Engineering, Kwangwoon University, Seoul 01897, Korea)

  • Dong In Kim

    (School of Information and Communication Engineering, Sungkyunkwan University, Suwon 440-746, Korea)

Abstract

The optimum transmission strategy for maximizing energy efficiency (EE) of a multi-user massive multiple-input multiple-output (MIMO) system in radio frequency energy harvesting networks is investigated. We focus on dynamic time-switching (TS) antennas, to avoid the practical problems of power-splitting antennas, such as complex architectures, power loss and signal distortion when splitting the power of the received signal into power for information decoding (ID) and energy harvesting (EH). However, since a single TS antenna cannot serve ID and EH simultaneously, the MIMO system is considered in this paper. We thus formulate an EE optimization problem and propose an iterative algorithm as a tractable solution, including an antenna selection strategy to optimally switch each TS antenna between ID mode and EH mode using nonlinear fractional programming and the Lagrange dual method. Further, the problem is solved under practical constraints of maximum transmission power and outage probabilities for a minimum amount of harvested power and rate capacity for each user. Simulation results show that the proposed algorithm is more energy-efficient than that of baseline schemes, and demonstrates the trade-off between the required amount of harvested power and energy efficiency.

Suggested Citation

  • Yu Min Hwang & Ji Ho Park & Yoan Shin & Jin Young Kim & Dong In Kim, 2017. "Transmission Power and Antenna Allocation for Energy-Efficient RF Energy Harvesting Networks with Massive MIMO," Energies, MDPI, vol. 10(6), pages 1-18, June.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:802-:d:101344
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/6/802/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/6/802/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Werner Dinkelbach, 1967. "On Nonlinear Fractional Programming," Management Science, INFORMS, vol. 13(7), pages 492-498, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guangyue Lu & Chan Lei & Yinghui Ye & Liqin Shi & Tianci Wang, 2019. "Energy Efficiency Optimization for AF Relaying with TS-SWIPT," Energies, MDPI, vol. 12(6), pages 1-13, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tunjo Perić & Josip Matejaš & Zoran Babić, 2023. "Advantages, sensitivity and application efficiency of the new iterative method to solve multi-objective linear fractional programming problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(3), pages 751-767, September.
    2. Luca Consolini & Marco Locatelli & Jiulin Wang & Yong Xia, 2020. "Efficient local search procedures for quadratic fractional programming problems," Computational Optimization and Applications, Springer, vol. 76(1), pages 201-232, May.
    3. Harald Dyckhoff & Katrin Allen, 1999. "Theoretische Begründung einer Effizienzanalyse mittels Data Envelopment Analysis (DEA)," Schmalenbach Journal of Business Research, Springer, vol. 51(5), pages 411-436, May.
    4. Feng Guo & Liguo Jiao, 2023. "A new scheme for approximating the weakly efficient solution set of vector rational optimization problems," Journal of Global Optimization, Springer, vol. 86(4), pages 905-930, August.
    5. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    6. Cook, Wade D. & Zhu, Joe, 2007. "Within-group common weights in DEA: An analysis of power plant efficiency," European Journal of Operational Research, Elsevier, vol. 178(1), pages 207-216, April.
    7. Laurent Alfandari & Alborz Hassanzadeh & Ivana Ljubić, 2021. "An Exact Method for Assortment Optimization under the Nested Logit Model," Working Papers hal-02463159, HAL.
    8. A. Roubi, 2000. "Method of Centers for Generalized Fractional Programming," Journal of Optimization Theory and Applications, Springer, vol. 107(1), pages 123-143, October.
    9. Andrés Gómez & Oleg A. Prokopyev, 2021. "A Mixed-Integer Fractional Optimization Approach to Best Subset Selection," INFORMS Journal on Computing, INFORMS, vol. 33(2), pages 551-565, May.
    10. Keshav Singh & Meng-Lin Ku & Sudip Biswas & Tharmalingam Ratnarajah, 2017. "Energy-Efficient Subcarrier Pairing and Power Allocation for DF Relay Networks with an Eavesdropper," Energies, MDPI, vol. 10(12), pages 1-13, November.
    11. Claassen, G.D.H., 2014. "Mixed integer (0–1) fractional programming for decision support in paper production industry," Omega, Elsevier, vol. 43(C), pages 21-29.
    12. Bo Zhang & YueLin Gao & Xia Liu & XiaoLi Huang, 2022. "An Outcome-Space-Based Branch-and-Bound Algorithm for a Class of Sum-of-Fractions Problems," Journal of Optimization Theory and Applications, Springer, vol. 192(3), pages 830-855, March.
    13. Hasuike, Takashi & Ishii, Hiroaki, 2009. "On flexible product-mix decision problems under randomness and fuzziness," Omega, Elsevier, vol. 37(4), pages 770-787, August.
    14. R. Yamamoto & H. Konno, 2007. "An Efficient Algorithm for Solving Convex–Convex Quadratic Fractional Programs," Journal of Optimization Theory and Applications, Springer, vol. 133(2), pages 241-255, May.
    15. Hongcan Lin & David Saunders & Chengguo Weng, 2019. "Portfolio Optimization With Performance Ratios," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-38, August.
    16. Vandana Goyal & Namrata Rani & Deepak Gupta, 2022. "Rouben Ranking Function and parametric approach to quadratically constrained multiobjective quadratic fractional programming with trapezoidal fuzzy number coefficients," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(2), pages 923-932, April.
    17. Patrick Groenen & Bart-Jan Os & Jacqueline Meulman, 2000. "Optimal scaling by alternating length-constrained nonnegative least squares, with application to distance-based analysis," Psychometrika, Springer;The Psychometric Society, vol. 65(4), pages 511-524, December.
    18. Tran Van Tung & To Truong An & Byung Moo Lee, 2022. "Joint Resource and Trajectory Optimization for Energy Efficiency Maximization in UAV-Based Networks," Mathematics, MDPI, vol. 10(20), pages 1-17, October.
    19. J Brimberg & P Hansen & G Laporte & N Mladenović & D Urošević, 2008. "The maximum return-on-investment plant location problem with market share," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 399-406, March.
    20. Hansen, Pierre & Jaumard, Brigitte & de Aragao, Marcus Poggi, 1998. "Mixed-integer column generation algorithms and the probabilistic maximum satisfiability problem," European Journal of Operational Research, Elsevier, vol. 108(3), pages 671-683, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:802-:d:101344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.