IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2747-d175462.html
   My bibliography  Save this article

Quantifying the Nonlinear Dynamic Behavior of the DC-DC Converter via Permutation Entropy

Author

Listed:
  • Zhenxiong Luo

    (School of Electric Power, South China University of Technology, Guangzhou 510641, China)

  • Fan Xie

    (School of Electric Power, South China University of Technology, Guangzhou 510641, China)

  • Bo Zhang

    (School of Electric Power, South China University of Technology, Guangzhou 510641, China)

  • Dongyuan Qiu

    (School of Electric Power, South China University of Technology, Guangzhou 510641, China)

Abstract

Quantifying nonlinear dynamic behaviors, such as bifurcation and chaos, in nonlinear systems are currently being investigated. In this paper, permutation entropy is used to characterize these complex phenomena in nonlinear direct current-direct current (DC-DC) converter systems. A mode switching time sequence (MSTS), containing the information from different periodic states, is obtained in a DC-DC converter by reading the inductor current when altering the switching mode. To obtain the nonlinear characteristics of this system, the concept of permutation entropy of symbolic probability distribution properties is introduced and the structure of the chaotic system is reproduced based on the theory of phase space reconstruction. A variety of nonlinear dynamic features of the DC-DC converter are analyzed using the MSTS and permutation entropy. Finally, a current-mode-controlled buck converter is reviewed as a case to study the quantification of nonlinear phenomena using permutation entropy as one of the system parameters changes.

Suggested Citation

  • Zhenxiong Luo & Fan Xie & Bo Zhang & Dongyuan Qiu, 2018. "Quantifying the Nonlinear Dynamic Behavior of the DC-DC Converter via Permutation Entropy," Energies, MDPI, vol. 11(10), pages 1-15, October.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2747-:d:175462
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2747/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2747/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaofei Li & Chunsen Tang & Xin Dai & Aiguo Patrick Hu & Sing Kiong Nguang, 2017. "Bifurcation Phenomena Studies of a Voltage Controlled Buck-Inverter Cascade System," Energies, MDPI, vol. 10(5), pages 1-13, May.
    2. Donglin Yan & Weiyu Wang & Qijuan Chen, 2018. "Nonlinear Modeling and Dynamic Analyses of the Hydro–Turbine Governing System in the Load Shedding Transient Regime," Energies, MDPI, vol. 11(5), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keyun Zhuang & Chaodan Gao & Ze Li & Donglin Yan & Xiangqian Fu, 2018. "Dynamic Analyses of the Hydro-Turbine Generator Shafting System Considering the Hydraulic Instability," Energies, MDPI, vol. 11(10), pages 1-19, October.
    2. Lisheng Li & Jing Qian & Yidong Zou & Danning Tian & Yun Zeng & Fei Cao & Xiang Li, 2022. "Optimized Takagi–Sugeno Fuzzy Mixed H 2 / H ∞ Robust Controller Design Based on CPSOGSA Optimization Algorithm for Hydraulic Turbine Governing System," Energies, MDPI, vol. 15(13), pages 1-31, June.
    3. Tianyu Yang & Bin Wang & Peng Chen, 2020. "Design of a Finite-Time Terminal Sliding Mode Controller for a Nonlinear Hydro-Turbine Governing System," Energies, MDPI, vol. 13(3), pages 1-14, February.
    4. Yixuan Guo & Xiao Liang & Ziyu Niu & Zezhou Cao & Liuwei Lei & Hualin Xiong & Diyi Chen, 2021. "Vibration Characteristics of a Hydroelectric Generating System with Different Hydraulic-Mechanical-Electric Parameters in a Sudden Load Increasing Process," Energies, MDPI, vol. 14(21), pages 1-21, November.
    5. Ivan Litvinov & Daniil Suslov & Evgeny Gorelikov & Sergey Shtork, 2021. "Experimental Study of Transient Flow Regimes in a Model Hydroturbine Draft Tube," Energies, MDPI, vol. 14(5), pages 1-13, February.
    6. Yuqiang Tian & Bin Wang & Diyi Chen & Shaokun Wang & Peng Chen & Ying Yang, 2019. "Design of a Nonlinear Predictive Controller for a Fractional-Order Hydraulic Turbine Governing System with Mechanical Time Delay," Energies, MDPI, vol. 12(24), pages 1-16, December.
    7. Liying Huang & Dongyuan Qiu & Fan Xie & Yanfeng Chen & Bo Zhang, 2017. "Modeling and Stability Analysis of a Single-Phase Two-Stage Grid-Connected Photovoltaic System," Energies, MDPI, vol. 10(12), pages 1-14, December.
    8. Shengli Liao & Hongye Zhao & Gang Li & Benxi Liu, 2019. "Short-Term Load Dispatching Method for a Diversion Hydropower Plant with Multiple Turbines in One Tunnel Using a Two-Stage Model," Energies, MDPI, vol. 12(8), pages 1-18, April.
    9. Keyun Zhuang & Shehua Huang & Xiangqian Fu & Li Chen, 2022. "Nonlinear Hydraulic Vibration Modeling and Dynamic Analysis of Hydro-Turbine Generator Unit with Multiple Faults," Energies, MDPI, vol. 15(9), pages 1-23, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2747-:d:175462. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.