IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p569-d96460.html
   My bibliography  Save this article

Development of Novel Robust Regulator for Maximum Wind Energy Extraction Based upon Perturbation and Observation

Author

Listed:
  • Bo Li

    (School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China)

  • Wenhu Tang

    (School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China)

  • Kaishun Xiahou

    (School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China)

  • Qinghua Wu

    (School of Electric Power Engineering, South China University of Technology, Guangzhou 510640, China)

Abstract

This paper develops a robust regulator design approach to maximum power point tracking (MPPT) of a variable-speed wind energy conversion system (WECS) under the concept of perturbation and observation. The proposed perturb and observe regulators (PORs) rooted on the sliding mode method employs the optimal power curve (OPC) to realize MPPT operations by continuously adjusting rotor speeds and the duty cycles, which can ensure control performance against system parameter variations. The proposed PORs can detect sudden wind speed changes indirectly through the mechanical power coefficient, which is used to acquire the rotor speed reference by comparing it with the optimal power constant. For the speed and duty cycle regulation, two novel controllers based on the proposed POR, i.e., an MPPT controller and a speed controller, are devised in this research. Moreover, by applying the small-signal analysis on a nonlinear wind turbine system, the convergence of the proposed speed controller is proven for the first time based on the Lyapunov theory, and meanwhile, a single-pole transfer function, to describe the effect of duty cycle variations on rotor speeds, is designed to ensure its stability. The proposed strategy is verified by simulation cases operated in MATLAB/Simulink and experimental results performed from a 0.5-kW wind turbine generator simulator.

Suggested Citation

  • Bo Li & Wenhu Tang & Kaishun Xiahou & Qinghua Wu, 2017. "Development of Novel Robust Regulator for Maximum Wind Energy Extraction Based upon Perturbation and Observation," Energies, MDPI, vol. 10(4), pages 1-21, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:569-:d:96460
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/569/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/569/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shin Young Heo & Mun Kyeom Kim & Jin Woo Choi, 2015. "Hybrid Intelligent Control Method to Improve the Frequency Support Capability of Wind Energy Conversion Systems," Energies, MDPI, vol. 8(10), pages 1-22, October.
    2. Hae Gwang Jeong & Ro Hak Seung & Kyo Beum Lee, 2012. "An Improved Maximum Power Point Tracking Method for Wind Power Systems," Energies, MDPI, vol. 5(5), pages 1-16, May.
    3. Ying Zhu & Ming Cheng & Wei Hua & Wei Wang, 2012. "A Novel Maximum Power Point Tracking Control for Permanent Magnet Direct Drive Wind Energy Conversion Systems," Energies, MDPI, vol. 5(5), pages 1-15, May.
    4. Dinh-Chung Phan & Shigeru Yamamoto, 2015. "Maximum Energy Output of a DFIG Wind Turbine Using an Improved MPPT-Curve Method," Energies, MDPI, vol. 8(10), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Camilo I. Martínez-Márquez & Jackson D. Twizere-Bakunda & David Lundback-Mompó & Salvador Orts-Grau & Francisco J. Gimeno-Sales & Salvador Seguí-Chilet, 2019. "Small Wind Turbine Emulator Based on Lambda-Cp Curves Obtained under Real Operating Conditions," Energies, MDPI, vol. 12(13), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Phan, Dinh-Chung & Yamamoto, Shigeru, 2016. "Rotor speed control of doubly fed induction generator wind turbines using adaptive maximum power point tracking," Energy, Elsevier, vol. 111(C), pages 377-388.
    2. Emejeamara, F.C. & Tomlin, A.S. & Millward-Hopkins, J.T., 2015. "Urban wind: Characterisation of useful gust and energy capture," Renewable Energy, Elsevier, vol. 81(C), pages 162-172.
    3. Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.
    4. Héctor Zazo & Esteban Del Castillo & Jean François Reynaud & Ramon Leyva, 2012. "MPPT for Photovoltaic Modules via Newton-Like Extremum Seeking Control," Energies, MDPI, vol. 5(8), pages 1-15, July.
    5. Yeongsu Bak & June-Seok Lee & Kyo-Beum Lee, 2016. "Balanced Current Control Strategy for Current Source Rectifier Stage of Indirect Matrix Converter under Unbalanced Grid Voltage Conditions," Energies, MDPI, vol. 10(1), pages 1-18, December.
    6. Akour, Salih N. & Al-Heymari, Mohammed & Ahmed, Talha & Khalil, Kamel Ali, 2018. "Experimental and theoretical investigation of micro wind turbine for low wind speed regions," Renewable Energy, Elsevier, vol. 116(PA), pages 215-223.
    7. Tripathi, S.M. & Tiwari, A.N. & Singh, Deependra, 2015. "Grid-integrated permanent magnet synchronous generator based wind energy conversion systems: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1288-1305.
    8. Yi Zhang & Hexu Sun & Yingjun Guo, 2020. "Integration Design and Operation Strategy of Multi-Energy Hybrid System Including Renewable Energies, Batteries and Hydrogen," Energies, MDPI, vol. 13(20), pages 1-25, October.
    9. Shoudao Huang & Yang Zhang & Zhikang Shuai, 2016. "Capacitor Voltage Ripple Suppression for Z-Source Wind Energy Conversion System," Energies, MDPI, vol. 9(1), pages 1-15, January.
    10. Hongmin Meng & Tingting Yang & Ji-zhen Liu & Zhongwei Lin, 2017. "A Flexible Maximum Power Point Tracking Control Strategy Considering Both Conversion Efficiency and Power Fluctuation for Large-inertia Wind Turbines," Energies, MDPI, vol. 10(7), pages 1-19, July.
    11. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "Wind Energy Market in Poland in the Background of the Baltic Sea Bordering Countries in the Era of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, March.
    12. Yeongsu Bak & Eunsil Lee & Kyo-Beum Lee, 2015. "Indirect Matrix Converter for Hybrid Electric Vehicle Application with Three-Phase and Single-Phase Outputs," Energies, MDPI, vol. 8(5), pages 1-18, April.
    13. Dinh-Chung Phan & Shigeru Yamamoto, 2015. "Maximum Energy Output of a DFIG Wind Turbine Using an Improved MPPT-Curve Method," Energies, MDPI, vol. 8(10), pages 1-19, October.
    14. Pablo Zambrana & Javier Fernandez-Quijano & J. Jesus Fernandez-Lozano & Pedro M. Mayorga Rubio & Alfonso J. Garcia-Cerezo, 2021. "Improving the Performance of Controllers for Wind Turbines on Semi-Submersible Offshore Platforms: Fuzzy Supervisor Control," Energies, MDPI, vol. 14(19), pages 1-17, September.
    15. Mircea Neagoe & Radu Saulescu & Codruta Jaliu, 2019. "Design and Simulation of a 1 DOF Planetary Speed Increaser for Counter-Rotating Wind Turbines with Counter-Rotating Electric Generators," Energies, MDPI, vol. 12(9), pages 1-19, May.
    16. Longfu Luo & Xiaofeng Zhang & Dongran Song & Weiyi Tang & Jian Yang & Li Li & Xiaoyu Tian & Wu Wen, 2018. "Optimal Design of Rated Wind Speed and Rotor Radius to Minimizing the Cost of Energy for Offshore Wind Turbines," Energies, MDPI, vol. 11(10), pages 1-17, October.
    17. Muthana Alrifai & Mohamed Zribi & Mohamed Rayan, 2016. "Feedback Linearization Controller for a Wind Energy Power System," Energies, MDPI, vol. 9(10), pages 1-23, September.
    18. Kyu-Hyung Jo & Mun-Kyeom Kim, 2018. "Improved Genetic Algorithm-Based Unit Commitment Considering Uncertainty Integration Method," Energies, MDPI, vol. 11(6), pages 1-18, May.
    19. Johan Forslund & Staffan Lundin & Karin Thomas & Mats Leijon, 2015. "Experimental Results of a DC Bus Voltage Level Control for a Load-Controlled Marine Current Energy Converter," Energies, MDPI, vol. 8(5), pages 1-15, May.
    20. Andrés Peña Asensio & Santiago Arnaltes Gómez & Jose Luis Rodriguez-Amenedo & Manuel García Plaza & Joaquín Eloy-García Carrasco & Jaime Manuel Alonso-Martínez de las Morenas, 2018. "A Voltage and Frequency Control Strategy for Stand-Alone Full Converter Wind Energy Conversion Systems," Energies, MDPI, vol. 11(3), pages 1-19, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:569-:d:96460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.