IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p505-d95325.html
   My bibliography  Save this article

Sensitivity of Risk-Based Maintenance Planning of Offshore Wind Turbine Farms

Author

Listed:
  • Simon Ambühl

    (Department of Civil Engineering, Aalborg University, 9220 Aalborg, Denmark)

  • John Dalsgaard Sørensen

    (Department of Civil Engineering, Aalborg University, 9220 Aalborg, Denmark)

Abstract

Inspection and maintenance expenses cover a considerable part of the cost of energy from offshore wind turbines. Risk-based maintenance planning approaches are a powerful tool to optimize maintenance and inspection actions and decrease the total maintenance expenses. Risk-based planning is based on many input parameters, which are in reality often not completely known. This paper will assess the cost impact of this incomplete knowledge based on a case study following risk-based maintenance planning. The sensitivity study focuses on weather forecast uncertainties, incomplete knowledge about the needed repair time on the site as well as uncertainties about the operational range of the boat and helicopter used to access the broken wind turbine. The cost saving potential is estimated by running Crude Monte Carlo simulations. Furthermore, corrective and preventive (scheduled and condition-based) maintenance strategies are implemented. The considered case study focuses on a wind farm consisting of ten 6 MW turbines placed 30 km off the Danish North Sea coast. The results show that the weather forecast is the uncertainty source dominating the maintenance expenses increase when considering risk-based decision-making uncertainties. The overall maintenance expenses increased by 70% to 140% when considering uncertainties directly related with risk-based maintenance planning.

Suggested Citation

  • Simon Ambühl & John Dalsgaard Sørensen, 2017. "Sensitivity of Risk-Based Maintenance Planning of Offshore Wind Turbine Farms," Energies, MDPI, vol. 10(4), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:505-:d:95325
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/505/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/505/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martin, Rebecca & Lazakis, Iraklis & Barbouchi, Sami & Johanning, Lars, 2016. "Sensitivity analysis of offshore wind farm operation and maintenance cost and availability," Renewable Energy, Elsevier, vol. 85(C), pages 1226-1236.
    2. Green, Richard & Vasilakos, Nicholas, 2011. "The economics of offshore wind," Energy Policy, Elsevier, vol. 39(2), pages 496-502, February.
    3. Jannie Sønderkær Nielsen & John Dalsgaard Sørensen, 2014. "Methods for Risk-Based Planning of O&M of Wind Turbines," Energies, MDPI, vol. 7(10), pages 1-20, October.
    4. Nielsen, Jannie Jessen & Sørensen, John Dalsgaard, 2011. "On risk-based operation and maintenance of offshore wind turbine components," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 218-229.
    5. Simon Ambühl & Laurent Marquis & Jens Peter Kofoed & John Dalsgaard Sørensen, 2015. "Operation and maintenance strategies for wave energy converters," Journal of Risk and Reliability, , vol. 229(5), pages 417-441, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shafiee, Mahmood & Sørensen, John Dalsgaard, 2019. "Maintenance optimization and inspection planning of wind energy assets: Models, methods and strategies," Reliability Engineering and System Safety, Elsevier, vol. 192(C).
    2. Satir, Mert & Murphy, Fionnuala & McDonnell, Kevin, 2018. "Feasibility study of an offshore wind farm in the Aegean Sea, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2552-2562.
    3. Li, Mingxin & Jiang, Xiaoli & Carroll, James & Negenborn, Rudy R., 2022. "A multi-objective maintenance strategy optimization framework for offshore wind farms considering uncertainty," Applied Energy, Elsevier, vol. 321(C).
    4. Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    5. Pinciroli, Luca & Baraldi, Piero & Ballabio, Guido & Compare, Michele & Zio, Enrico, 2022. "Optimization of the Operation and Maintenance of renewable energy systems by Deep Reinforcement Learning," Renewable Energy, Elsevier, vol. 183(C), pages 752-763.
    6. Pliego Marugán, Alberto & García Márquez, Fausto Pedro & Pinar Pérez, Jesús María, 2022. "A techno-economic model for avoiding conflicts of interest between owners of offshore wind farms and maintenance suppliers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Li, He & Teixeira, Angelo P. & Guedes Soares, C., 2020. "A two-stage Failure Mode and Effect Analysis of offshore wind turbines," Renewable Energy, Elsevier, vol. 162(C), pages 1438-1461.
    8. Masoud Asgarpour & John Dalsgaard Sørensen, 2018. "Bayesian Based Diagnostic Model for Condition Based Maintenance of Offshore Wind Farms," Energies, MDPI, vol. 11(2), pages 1-17, January.
    9. Lopez, Javier Contreras & Kolios, Athanasios & Wang, Lin & Chiachio, Manuel & Dimitrov, Nikolay, 2024. "Reliability-based leading edge erosion maintenance strategy selection framework," Applied Energy, Elsevier, vol. 358(C).
    10. Topper, Mathew B.R. & Nava, Vincenzo & Collin, Adam J. & Bould, David & Ferri, Francesco & Olson, Sterling S. & Dallman, Ann R. & Roberts, Jesse D. & Ruiz-Minguela, Pablo & Jeffrey, Henry F., 2019. "Reducing variability in the cost of energy of ocean energy arrays," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 263-279.
    11. Tautz-Weinert, Jannis & Yürüşen, Nurseda Y. & Melero, Julio J. & Watson, Simon J., 2019. "Sensitivity study of a wind farm maintenance decision - A performance and revenue analysis," Renewable Energy, Elsevier, vol. 132(C), pages 93-105.
    12. Qin, Chao & Saunders, Gordon & Loth, Eric, 2017. "Offshore wind energy storage concept for cost-of-rated-power savings," Applied Energy, Elsevier, vol. 201(C), pages 148-157.
    13. Sadeghian, Omid & Mohammadpour Shotorbani, Amin & Mohammadi-Ivatloo, Behnam & Sadiq, Rehan & Hewage, Kasun, 2021. "Risk-averse maintenance scheduling of generation units in combined heat and power systems with demand response," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
    15. Jin, Xin & Zhang, Zhaolong & Shi, Xiaoqiang & Ju, Wenbin, 2014. "A review on wind power industry and corresponding insurance market in China: Current status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1069-1082.
    16. Ahmed Al-Ajmi & Yingzhao Wang & Siniša Djurović, 2021. "Wind Turbine Generator Controller Signals Supervised Machine Learning for Shaft Misalignment Fault Detection: A Doubly Fed Induction Generator Practical Case Study," Energies, MDPI, vol. 14(6), pages 1-15, March.
    17. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2014. "Study on offshore wind power potential and wind farm optimization in Hong Kong," Applied Energy, Elsevier, vol. 130(C), pages 519-531.
    18. Li, Yan-Fu & Zio, Enrico, 2012. "A multi-state model for the reliability assessment of a distributed generation system via universal generating function," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 28-36.
    19. Rubio-Domingo, G. & Linares, P., 2021. "The future investment costs of offshore wind: An estimation based on auction results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    20. Leimeister, Mareike & Kolios, Athanasios, 2018. "A review of reliability-based methods for risk analysis and their application in the offshore wind industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1065-1076.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:505-:d:95325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.