IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v85y2016icp1226-1236.html
   My bibliography  Save this article

Sensitivity analysis of offshore wind farm operation and maintenance cost and availability

Author

Listed:
  • Martin, Rebecca
  • Lazakis, Iraklis
  • Barbouchi, Sami
  • Johanning, Lars

Abstract

Operation and Maintenance (O&M) costs are estimated to account for 14%–30% of total Offshore Wind Farm (OWF) project lifecycle expenditure according to a range of studies. In this respect, identifying factors affecting operational costs and availability are vital for wind farm operators to achieve the most profitable decisions. Many OWFs are built in stages and the important factors may not be consistent for the different phases. To address this issue, three OWF case studies are defined to represent two phases and a complete project. An initial qualitative screening sensitivity analysis was conducted to identify the most important factors of O&M affecting operating cost and availability. The study concluded that the important factors for total O&M cost were access and repair costs along with failure rates for both minor and major repairs. For time-based availability, the important factors identified were those related to the length of time conducting the maintenance tasks, i.e. the operation duration and the working day length. It was found that the two stages had similar results, but these were different compared to the complete project. In this case, the results provide valuable information to OWF operators during the project development and decision making process.

Suggested Citation

  • Martin, Rebecca & Lazakis, Iraklis & Barbouchi, Sami & Johanning, Lars, 2016. "Sensitivity analysis of offshore wind farm operation and maintenance cost and availability," Renewable Energy, Elsevier, vol. 85(C), pages 1226-1236.
  • Handle: RePEc:eee:renene:v:85:y:2016:i:c:p:1226-1236
    DOI: 10.1016/j.renene.2015.07.078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115301749
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.07.078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jack P.C. Kleijnen, 2015. "Design and Analysis of Simulation Experiments," International Series in Operations Research and Management Science, Springer, edition 2, number 978-3-319-18087-8, April.
    2. Tian, Wei, 2013. "A review of sensitivity analysis methods in building energy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 411-419.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    2. Rennen, G. & Husslage, B.G.M. & van Dam, E.R. & den Hertog, D., 2009. "Nested Maximin Latin Hypercube Designs," Discussion Paper 2009-06, Tilburg University, Center for Economic Research.
    3. Ehsan Mehdad & Jack P. C. Kleijnen, 2018. "Efficient global optimisation for black-box simulation via sequential intrinsic Kriging," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 69(11), pages 1725-1737, November.
    4. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    5. Tim Voigt & Martin Kohlhase & Oliver Nelles, 2021. "Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge," Mathematics, MDPI, vol. 9(19), pages 1-26, October.
    6. F. Wang & G. H. Huang & Y. Fan & Y. P. Li, 2020. "Robust Subsampling ANOVA Methods for Sensitivity Analysis of Water Resource and Environmental Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(10), pages 3199-3217, August.
    7. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.
    8. Shi, Wen & Liu, Zhixue & Shang, Jennifer & Cui, Yujia, 2013. "Multi-criteria robust design of a JIT-based cross-docking distribution center for an auto parts supply chain," European Journal of Operational Research, Elsevier, vol. 229(3), pages 695-706.
    9. Lei, Nuoa & Masanet, Eric, 2020. "Statistical analysis for predicting location-specific data center PUE and its improvement potential," Energy, Elsevier, vol. 201(C).
    10. Alfieri, Arianna & Matta, Andrea, 2012. "Mathematical programming formulations for approximate simulation of multistage production systems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 773-783.
    11. Yuan, Jun & Nian, Victor & Su, Bin & Meng, Qun, 2017. "A simultaneous calibration and parameter ranking method for building energy models," Applied Energy, Elsevier, vol. 206(C), pages 657-666.
    12. İhsan Yanıkoğlu & Erinç Albey & Serkan Okçuoğlu, 2022. "Robust Parameter Design and Optimization for Quality Engineering," SN Operations Research Forum, Springer, vol. 3(1), pages 1-36, March.
    13. Arianna Alfieri & Andrea Matta & Giulia Pedrielli, 2015. "Mathematical programming models for joint simulation–optimization applied to closed queueing networks," Annals of Operations Research, Springer, vol. 231(1), pages 105-127, August.
    14. Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
    15. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A three-stage optimization methodology for envelope design of passive house considering energy demand, thermal comfort and cost," Energy, Elsevier, vol. 192(C).
    16. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Classic Kriging versus Kriging with Bootstrapping or Conditional Simulation : Classic Kriging's Robust Confidence Intervals and Optimization (Revised version of CentER DP 2013-038)," Other publications TiSEM 4915047b-afe4-4fc7-8a1c-4, Tilburg University, School of Economics and Management.
    17. Fernando Alarid-Escudero & Richard F. MacLehose & Yadira Peralta & Karen M. Kuntz & Eva A. Enns, 2018. "Nonidentifiability in Model Calibration and Implications for Medical Decision Making," Medical Decision Making, , vol. 38(7), pages 810-821, October.
    18. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    19. Dellino, Gabriella & Kleijnen, Jack P.C. & Meloni, Carlo, 2010. "Robust optimization in simulation: Taguchi and Response Surface Methodology," International Journal of Production Economics, Elsevier, vol. 125(1), pages 52-59, May.
    20. Rehman, Hassam ur & Hirvonen, Janne & Sirén, Kai, 2017. "A long-term performance analysis of three different configurations for community-sized solar heating systems in high latitudes," Renewable Energy, Elsevier, vol. 113(C), pages 479-493.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:85:y:2016:i:c:p:1226-1236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.