A Solar Energy Solution for Sustainable Third Generation Mobile Networks
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Rehman, Shafiqur & Al-Hadhrami, Luai M., 2010. "Study of a solar PV–diesel–battery hybrid power system for a remotely located population near Rafha, Saudi Arabia," Energy, Elsevier, vol. 35(12), pages 4986-4995.
- Mohammed H. Alsharif & Jeong Kim, 2016. "Optimal Solar Power System for Remote Telecommunication Base Stations: A Case Study Based on the Characteristics of South Korea’s Solar Radiation Exposure," Sustainability, MDPI, vol. 8(9), pages 1-21, September.
- Asma Mohamad Aris & Bahman Shabani, 2015. "Sustainable Power Supply Solutions for Off-Grid Base Stations," Energies, MDPI, vol. 8(10), pages 1-38, September.
- Kusakana, Kanzumba & Vermaak, Herman Jacobus, 2013. "Hybrid renewable power systems for mobile telephony base stations in developing countries," Renewable Energy, Elsevier, vol. 51(C), pages 419-425.
- Margaret Amutha, W. & Rajini, V., 2015. "Techno-economic evaluation of various hybrid power systems for rural telecom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 553-561.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andrea Micangeli & Riccardo Del Citto & Isaac Nzue Kiva & Simone Giovanni Santori & Valeria Gambino & Jeremiah Kiplagat & Daniele Viganò & Davide Fioriti & Davide Poli, 2017. "Energy Production Analysis and Optimization of Mini-Grid in Remote Areas: The Case Study of Habaswein, Kenya," Energies, MDPI, vol. 10(12), pages 1-23, December.
- Manish Kumar Singla & Jyoti Gupta & Parag Nijhawan & Amandeep Singh Oberoi & Mohammed H. Alsharif & Abu Jahid, 2023. "Role of a Unitized Regenerative Fuel Cell in Remote Area Power Supply: A Review," Energies, MDPI, vol. 16(15), pages 1-21, August.
- Peter Ozaveshe Oviroh & Tien-Chien Jen, 2018. "The Energy Cost Analysis of Hybrid Systems and Diesel Generators in Powering Selected Base Transceiver Station Locations in Nigeria," Energies, MDPI, vol. 11(3), pages 1-20, March.
- Mohammed H. Alsharif, 2017. "Comparative Analysis of Solar-Powered Base Stations for Green Mobile Networks," Energies, MDPI, vol. 10(8), pages 1-25, August.
- Chung-Jen Chou & Shyh-Biau Jiang & Tse-Liang Yeh & Li-Duan Tsai & Ku-Yen Kang & Ching-Jung Liu, 2020. "A Portable Direct Methanol Fuel Cell Power Station for Long-Term Internet of Things Applications," Energies, MDPI, vol. 13(14), pages 1-13, July.
- Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2018. "Energy Optimization Strategies for Eco-Friendly Cellular Base Stations," Energies, MDPI, vol. 11(6), pages 1-22, June.
- Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
- Md. Sanwar Hossain & Abdullah G. Alharbi & Khondoker Ziaul Islam & Md. Rabiul Islam, 2021. "Techno-Economic Analysis of the Hybrid Solar PV/H/Fuel Cell Based Supply Scheme for Green Mobile Communication," Sustainability, MDPI, vol. 13(22), pages 1-29, November.
- Evangelos Bellos & Christos Tzivanidis, 2017. "Optimization of a Solar-Driven Trigeneration System with Nanofluid-Based Parabolic Trough Collectors," Energies, MDPI, vol. 10(7), pages 1-31, June.
- Ilunga Kajila Rice & Hanhua Zhu & Cunquan Zhang & Arnauld Robert Tapa, 2023. "A Hybrid Photovoltaic/Diesel System for Off-Grid Applications in Lubumbashi, DR Congo: A HOMER Pro Modeling and Optimization Study," Sustainability, MDPI, vol. 15(10), pages 1-15, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Mohammed H. Alsharif, 2017. "Techno-Economic Evaluation of a Stand-Alone Power System Based on Solar Power/Batteries for Global System for Mobile Communications Base Stations," Energies, MDPI, vol. 10(3), pages 1-20, March.
- Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2017. "Green and Sustainable Cellular Base Stations: An Overview and Future Research Directions," Energies, MDPI, vol. 10(5), pages 1-27, April.
- Mohammed H. Alsharif & Jeong Kim, 2016. "Hybrid Off-Grid SPV/WTG Power System for Remote Cellular Base Stations Towards Green and Sustainable Cellular Networks in South Korea," Energies, MDPI, vol. 10(1), pages 1-23, December.
- Banjo A. Aderemi & S. P. Daniel Chowdhury & Thomas O. Olwal & Adnan M. Abu-Mahfouz, 2018. "Techno-Economic Feasibility of Hybrid Solar Photovoltaic and Battery Energy Storage Power System for a Mobile Cellular Base Station in Soshanguve, South Africa," Energies, MDPI, vol. 11(6), pages 1-26, June.
- Mohammed H. Alsharif, 2017. "Comparative Analysis of Solar-Powered Base Stations for Green Mobile Networks," Energies, MDPI, vol. 10(8), pages 1-25, August.
- Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
- Akinyele, D.O. & Rayudu, R.K., 2016. "Community-based hybrid electricity supply system: A practical and comparative approach," Applied Energy, Elsevier, vol. 171(C), pages 608-628.
- Mohammed W. Baidas & Mastoura F. Almusailem & Rashad M. Kamel & Sultan Sh. Alanzi, 2022. "Renewable-Energy-Powered Cellular Base-Stations in Kuwait’s Rural Areas," Energies, MDPI, vol. 15(7), pages 1-29, March.
- Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2018. "Energy Optimization Strategies for Eco-Friendly Cellular Base Stations," Energies, MDPI, vol. 11(6), pages 1-22, June.
- Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2018. "Opportunities and Challenges of Solar and Wind Energy in South Korea: A Review," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
- William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
- Cordiner, S. & Mulone, V. & Giordani, A. & Savino, M. & Tomarchio, G. & Malkow, T. & Tsotridis, G. & Pilenga, A. & Karlsen, M.L. & Jensen, J., 2017. "Fuel cell based Hybrid Renewable Energy Systems for off-grid telecom stations: Data analysis from on field demonstration tests," Applied Energy, Elsevier, vol. 192(C), pages 508-518.
- Md. Sanwar Hossain & Abu Jahid & Khondoker Ziaul Islam & Mohammed H. Alsharif & Md. Fayzur Rahman, 2020. "Multi-Objective Optimum Design of Hybrid Renewable Energy System for Sustainable Energy Supply to a Green Cellular Networks," Sustainability, MDPI, vol. 12(9), pages 1-35, April.
- Yilmaz, Saban & Dincer, Furkan, 2017. "Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 344-352.
- Zeljković, Čedomir & Mršić, Predrag & Erceg, Bojan & Lekić, Đorđe & Kitić, Nemanja & Matić, Petar, 2022. "Optimal sizing of photovoltaic-wind-diesel-battery power supply for mobile telephony base stations," Energy, Elsevier, vol. 242(C).
- Bartolucci, Lorenzo & Cordiner, Stefano & Mulone, Vincenzo & Pasquale, Stefano, 2019. "Fuel cell based hybrid renewable energy systems for off-grid telecom stations: Data analysis and system optimization," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Seoin Baek & Heetae Kim & Hyun Joon Chang, 2016. "Optimal Hybrid Renewable Airport Power System: Empirical Study on Incheon International Airport, South Korea," Sustainability, MDPI, vol. 8(6), pages 1-13, June.
- Rezk, Hegazy & Sayed, Enas Taha & Al-Dhaifallah, Mujahed & Obaid, M. & El-Sayed, Abou Hashema M. & Abdelkareem, Mohammad Ali & Olabi, A.G., 2019. "Fuel cell as an effective energy storage in reverse osmosis desalination plant powered by photovoltaic system," Energy, Elsevier, vol. 175(C), pages 423-433.
- Heetae Kim & Jinwoo Bae & Seoin Baek & Donggyun Nam & Hyunsung Cho & Hyun Joon Chang, 2017. "Comparative Analysis between the Government Micro-Grid Plan and Computer Simulation Results Based on Real Data: The Practical Case for a South Korean Island," Sustainability, MDPI, vol. 9(2), pages 1-18, January.
- Mahshid Javidsharifi & Hamoun Pourroshanfekr & Tamas Kerekes & Dezso Sera & Sergiu Spataru & Josep M. Guerrero, 2021. "Optimum Sizing of Photovoltaic and Energy Storage Systems for Powering Green Base Stations in Cellular Networks," Energies, MDPI, vol. 14(7), pages 1-21, March.
More about this item
Keywords
energy consumption; green mobile networks; energy harvesting; power management; smart grid; solar energy; sustainable wireless networks;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:429-:d:93967. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.