IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5761-d1208864.html
   My bibliography  Save this article

Role of a Unitized Regenerative Fuel Cell in Remote Area Power Supply: A Review

Author

Listed:
  • Manish Kumar Singla

    (Department of Interdisciplinary Courses in Engineering, Chitkara University Institute of Engineering & Technology, Chitkara University, Rajpura 140401, India)

  • Jyoti Gupta

    (Department of Computer Science, Shree Guru Gobind Singh Tricentenary University, Gurugram 122505, India)

  • Parag Nijhawan

    (Electrical and Instrumentation Engineering Department, Thapar Institue of Engineering and Technology, Patiala 147004, India)

  • Amandeep Singh Oberoi

    (Mechanical Engineering Department, Thapar Institue of Engineering and Technology, Patiala 147004, India)

  • Mohammed H. Alsharif

    (Department of Electrical Engineering, College of Electronics and Information Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, Republic of Korea)

  • Abu Jahid

    (School of Electrical Engineering and Computer Science, University of Ottawa, 25 Templeton St., Ottawa, ON K1N 6N5, Canada)

Abstract

This manuscript presents a thorough review of unitized regenerative fuel cells (URFCs) and their importance in Remote Area Power Supply (RAPS). In RAPS systems that utilize solar and hydrogen power, which typically include photovoltaic modules, a proton exchange membrane (PEM) electrolyzer, hydrogen gas storage, and PEM fuel cells, the cost of these systems is currently higher compared to conventional RAPS systems that employ diesel generators or batteries. URFCs offer a potential solution to reduce the expenses of solar hydrogen renewable energy systems in RAPS by combining the functionalities of the electrolyzer and fuel cell into a single unit, thereby eliminating the need to purchase separate and costly electrolyzer and fuel cell units. URFCs are particularly well-suited for RAPS applications because the electrolyzer and fuel cell do not need to operate simultaneously. In electrolyzer mode, URFCs function similarly to stand-alone electrolyzers. However, in fuel cell mode, the performance of URFCs is inferior to that of stand-alone fuel cells. The presented review summarizes the past, present, and future of URFCs with details on the operating modes of URFCs, limitations and technical challenges, and applications. Solar hydrogen renewable energy applications in RAPS and challenges facing solar hydrogen renewable energy in the RAPS is discussed in detail.

Suggested Citation

  • Manish Kumar Singla & Jyoti Gupta & Parag Nijhawan & Amandeep Singh Oberoi & Mohammed H. Alsharif & Abu Jahid, 2023. "Role of a Unitized Regenerative Fuel Cell in Remote Area Power Supply: A Review," Energies, MDPI, vol. 16(15), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5761-:d:1208864
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5761/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5761/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Marshall, A. & Børresen, B. & Hagen, G. & Tsypkin, M. & Tunold, R., 2007. "Hydrogen production by advanced proton exchange membrane (PEM) water electrolysers—Reduced energy consumption by improved electrocatalysis," Energy, Elsevier, vol. 32(4), pages 431-436.
    2. Mohammed H. Alsharif, 2017. "A Solar Energy Solution for Sustainable Third Generation Mobile Networks," Energies, MDPI, vol. 10(4), pages 1-17, March.
    3. Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2018. "Opportunities and Challenges of Solar and Wind Energy in South Korea: A Review," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    4. Mohammed H. Alsharif & Jeong Kim, 2016. "Optimal Solar Power System for Remote Telecommunication Base Stations: A Case Study Based on the Characteristics of South Korea’s Solar Radiation Exposure," Sustainability, MDPI, vol. 8(9), pages 1-21, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Sanwar Hossain & Abu Jahid & Khondoker Ziaul Islam & Mohammed H. Alsharif & Md. Fayzur Rahman, 2020. "Multi-Objective Optimum Design of Hybrid Renewable Energy System for Sustainable Energy Supply to a Green Cellular Networks," Sustainability, MDPI, vol. 12(9), pages 1-35, April.
    2. Mohammed H. Alsharif, 2017. "Comparative Analysis of Solar-Powered Base Stations for Green Mobile Networks," Energies, MDPI, vol. 10(8), pages 1-25, August.
    3. Xiang Huang & Yapan Qu & Zhentao Zhu & Qiuchi Wu, 2023. "Techno-Economic Analysis of Photovoltaic Hydrogen Production Considering Technological Progress Uncertainty," Sustainability, MDPI, vol. 15(4), pages 1-29, February.
    4. Byung Moo Lee, 2017. "Energy Efficiency Gain of Cellular Base Stations with Large-Scale Antenna Systems for Green Information and Communication Technology," Sustainability, MDPI, vol. 9(7), pages 1-18, June.
    5. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    6. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    7. Mohammed H. Alsharif & Jeong Kim, 2016. "Hybrid Off-Grid SPV/WTG Power System for Remote Cellular Base Stations Towards Green and Sustainable Cellular Networks in South Korea," Energies, MDPI, vol. 10(1), pages 1-23, December.
    8. Banjo A. Aderemi & S. P. Daniel Chowdhury & Thomas O. Olwal & Adnan M. Abu-Mahfouz, 2018. "Techno-Economic Feasibility of Hybrid Solar Photovoltaic and Battery Energy Storage Power System for a Mobile Cellular Base Station in Soshanguve, South Africa," Energies, MDPI, vol. 11(6), pages 1-26, June.
    9. Mohanad A. Deif & Ahmed A. A. Solyman & Mohammed H. Alsharif & Seungwon Jung & Eenjun Hwang, 2021. "A Hybrid Multi-Objective Optimizer-Based SVM Model for Enhancing Numerical Weather Prediction: A Study for the Seoul Metropolitan Area," Sustainability, MDPI, vol. 14(1), pages 1-17, December.
    10. Mo, Jingke & Kang, Zhenye & Yang, Gaoqiang & Retterer, Scott T. & Cullen, David A. & Toops, Todd J. & Green, Johney B. & Zhang, Feng-Yuan, 2016. "Thin liquid/gas diffusion layers for high-efficiency hydrogen production from water splitting," Applied Energy, Elsevier, vol. 177(C), pages 817-822.
    11. Deshmukh, Sachin S. & Boehm, Robert F., 2008. "Review of modeling details related to renewably powered hydrogen systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2301-2330, December.
    12. Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2018. "Energy Optimization Strategies for Eco-Friendly Cellular Base Stations," Energies, MDPI, vol. 11(6), pages 1-22, June.
    13. Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2018. "Opportunities and Challenges of Solar and Wind Energy in South Korea: A Review," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    14. Kyounga Lee & Jongmun Cha, 2020. "Towards Improved Circular Economy and Resource Security in South Korea," Sustainability, MDPI, vol. 13(1), pages 1-14, December.
    15. Pantò, Fabiola & Siracusano, Stefania & Briguglio, Nicola & Aricò, Antonino Salvatore, 2020. "Durability of a recombination catalyst-based membrane-electrode assembly for electrolysis operation at high current density," Applied Energy, Elsevier, vol. 279(C).
    16. Andrea Micangeli & Riccardo Del Citto & Isaac Nzue Kiva & Simone Giovanni Santori & Valeria Gambino & Jeremiah Kiplagat & Daniele Viganò & Davide Fioriti & Davide Poli, 2017. "Energy Production Analysis and Optimization of Mini-Grid in Remote Areas: The Case Study of Habaswein, Kenya," Energies, MDPI, vol. 10(12), pages 1-23, December.
    17. Min Hee Chung, 2020. "Comparison of Economic Feasibility for Efficient Peer-to-Peer Electricity Trading of PV-Equipped Residential House in Korea," Energies, MDPI, vol. 13(14), pages 1-21, July.
    18. Vo, Truc T.Q. & Rajendran, Karthik & Murphy, Jerry D., 2018. "Can power to methane systems be sustainable and can they improve the carbon intensity of renewable methane when used to upgrade biogas produced from grass and slurry?," Applied Energy, Elsevier, vol. 228(C), pages 1046-1056.
    19. Chandra, Debraj & Sato, Tetsuya & Tanahashi, Yuki & Takeuchi, Ryouchi & Yagi, Masayuki, 2019. "Facile fabrication and nanostructure control of mesoporous iridium oxide films for efficient electrocatalytic water oxidation," Energy, Elsevier, vol. 173(C), pages 278-289.
    20. Daphne Ngar-yin Mah & Darren Man-wai Cheung, 2020. "Conceptualizing Niche–Regime Dynamics of Energy Transitions from a Political Economic Perspective: Insights from Community-Led Urban Solar in Seoul," Sustainability, MDPI, vol. 12(12), pages 1-28, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5761-:d:1208864. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.