IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i3p275-d91522.html
   My bibliography  Save this article

Thermodynamic Performance Analysis of a Biogas-Fuelled Micro-Gas Turbine with a Bottoming Organic Rankine Cycle for Sewage Sludge and Food Waste Treatment Plants

Author

Listed:
  • Sunhee Kim

    (School of Mechanical Engineering, Pusan National University, Busan 46241, Korea)

  • Taehong Sung

    (School of Mechanical Engineering, Pusan National University, Busan 46241, Korea)

  • Kyung Chun Kim

    (School of Mechanical Engineering, Pusan National University, Busan 46241, Korea)

Abstract

In the Republic of Korea, efficient biogas-fuelled power systems are needed to use the excess biogas that is currently burned due to a lack of suitable power technology. We examined the performance of a biogas-fuelled micro-gas turbine (MGT) system and a bottoming organic Rankine cycle (ORC). The MGT provides robust operation with low-grade biogas, and the exhaust can be used for heating the biodigester. Similarly, the bottoming ORC generates additional power output with the exhaust gas. We selected a 1000-kW MGT for four co-digestion plants with 28,000-m 3 capacity. A 150-kW ORC system was selected for the MGT exhaust gas. We analysed the effects of the system size, methane concentration, and ORC operating conditions. Based on the system performance, we analysed the annual performance of the MGT with a combined heat and power (CHP) system, bottoming ORC, or both a bottoming ORC and CHP system. The annual net power outputs for each system were 7.4, 8.5, and 9.0 MWh per year, respectively.

Suggested Citation

  • Sunhee Kim & Taehong Sung & Kyung Chun Kim, 2017. "Thermodynamic Performance Analysis of a Biogas-Fuelled Micro-Gas Turbine with a Bottoming Organic Rankine Cycle for Sewage Sludge and Food Waste Treatment Plants," Energies, MDPI, vol. 10(3), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:275-:d:91522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/3/275/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/3/275/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chandra, R. & Vijay, V.K. & Subbarao, P.M.V. & Khura, T.K., 2011. "Performance evaluation of a constant speed IC engine on CNG, methane enriched biogas and biogas," Applied Energy, Elsevier, vol. 88(11), pages 3969-3977.
    2. Kang, Jun Young & Kang, Do Won & Kim, Tong Seop & Hur, Kwang Beom, 2014. "Comparative economic analysis of gas turbine-based power generation and combined heat and power systems using biogas fuel," Energy, Elsevier, vol. 67(C), pages 309-318.
    3. Kim, Yong-Sung & Yoon, Young-Man & Kim, Chang-Hyun & Giersdorf, Jens, 2012. "Status of biogas technologies and policies in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3430-3438.
    4. Basrawi, Mohamad Firdaus Bin & Yamada, Takanobu & Nakanishi, Kimio & Katsumata, Hideaki, 2012. "Analysis of the performances of biogas-fuelled micro gas turbine cogeneration systems (MGT-CGSs) in middle- and small-scale sewage treatment plants: Comparison of performances and optimization of MGTs," Energy, Elsevier, vol. 38(1), pages 291-304.
    5. Taehong Sung & Sang Youl Yoon & Kyung Chun Kim, 2015. "A Mathematical Model of Hourly Solar Radiation in Varying Weather Conditions for a Dynamic Simulation of the Solar Organic Rankine Cycle," Energies, MDPI, vol. 8(7), pages 1-12, July.
    6. Suresh Baral & Dokyun Kim & Eunkoo Yun & Kyung Chun Kim, 2015. "Energy, Exergy and Performance Analysis of Small-Scale Organic Rankine Cycle Systems for Electrical Power Generation Applicable in Rural Areas of Developing Countries," Energies, MDPI, vol. 8(2), pages 1-30, January.
    7. Ho-Young Kim & So-Yeon Park & Seung-Hoon Yoo, 2016. "Public Acceptability of Introducing a Biogas Mandate in Korea: A Contingent Valuation Study," Sustainability, MDPI, vol. 8(11), pages 1-16, October.
    8. Hongyu Huang & Jun Li & Zhaohong He & Tao Zeng & Noriyuki Kobayashi & Mitsuhiro Kubota, 2015. "Performance Analysis of a MCFC/MGT Hybrid Power System Bi-Fueled by City Gas and Biogas," Energies, MDPI, vol. 8(6), pages 1-17, June.
    9. Pöschl, Martina & Ward, Shane & Owende, Philip, 2010. "Evaluation of energy efficiency of various biogas production and utilization pathways," Applied Energy, Elsevier, vol. 87(11), pages 3305-3321, November.
    10. Yun, Eunkoo & Kim, Dokyun & Yoon, Sang Youl & Kim, Kyung Chun, 2015. "Experimental investigation of an organic Rankine cycle with multiple expanders used in parallel," Applied Energy, Elsevier, vol. 145(C), pages 246-254.
    11. Yağlı, Hüseyin & Koç, Yıldız & Koç, Ali & Görgülü, Adnan & Tandiroğlu, Ahmet, 2016. "Parametric optimization and exergetic analysis comparison of subcritical and supercritical organic Rankine cycle (ORC) for biogas fuelled combined heat and power (CHP) engine exhaust gas waste heat," Energy, Elsevier, vol. 111(C), pages 923-932.
    12. Lantz, Mikael, 2012. "The economic performance of combined heat and power from biogas produced from manure in Sweden – A comparison of different CHP technologies," Applied Energy, Elsevier, vol. 98(C), pages 502-511.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baccioli, Andrea & Ferrari, Lorenzo & Vizza, Francesco & Desideri, Umberto, 2019. "Potential energy recovery by integrating an ORC in a biogas plant," Applied Energy, Elsevier, vol. 256(C).
    2. Al-Dahidi, Sameer & Alrbai, Mohammad & Al-Ghussain, Loiy & Alahmer, Ali, 2024. "Maximizing energy efficiency in wastewater treatment plants: A data-driven approach for waste heat recovery and an economic analysis using Organic Rankine Cycle and thermal energy storage," Applied Energy, Elsevier, vol. 362(C).
    3. Cao, Yan & Dhahad, Hayder A. & Hussen, Hasanen M. & Anqi, Ali E. & Farouk, Naeim & Issakhov, Alibek, 2022. "Development and tri-objective optimization of a novel biomass to power and hydrogen plant: A comparison of fueling with biomass gasification or biomass digestion," Energy, Elsevier, vol. 238(PC).
    4. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    5. MosayebNezhad, M. & Mehr, A.S. & Lanzini, A. & Misul, D. & Santarelli, M., 2019. "Technology review and thermodynamic performance study of a biogas-fed micro humid air turbine," Renewable Energy, Elsevier, vol. 140(C), pages 407-418.
    6. Liu, Hongzhao & Wang, Yuzhang & Yu, Tao & Liu, Hecong & Cai, Weiwei & Weng, Shilie, 2020. "Effect of carbon dioxide content in biogas on turbulent combustion in the combustor of micro gas turbine," Renewable Energy, Elsevier, vol. 147(P1), pages 1299-1311.
    7. Arslan, Muhammed & Yılmaz, Ceyhun, 2022. "Thermodynamic Optimization and Thermoeconomic Evaluation of Afyon Biogas Plant assisted by organic Rankine Cycle for waste heat recovery," Energy, Elsevier, vol. 248(C).
    8. Huang, Zhi & Su, Bosheng & Wang, Yilin & Yuan, Shuo & Huang, Yupeng & Li, Liang & Cai, Jiahao & Chen, Zhiqiang, 2024. "A novel biogas-driven CCHP system based on chemical reinjection," Energy, Elsevier, vol. 297(C).
    9. Chia-Chi Chang & Manh Van Do & Wei-Li Hsu & Bo-Liang Liu & Ching-Yuan Chang & Yi-Hung Chen & Min-Hao Yuan & Cheng-Fang Lin & Chang-Ping Yu & Yen-Hau Chen & Je-Lueng Shie & Wan-Yi Wu & Chien-Hsien Lee , 2019. "A Case Study on the Electricity Generation Using a Micro Gas Turbine Fuelled by Biogas from a Sewage Treatment Plant," Energies, MDPI, vol. 12(12), pages 1-15, June.
    10. Mohammadpour, Mohammadreza & Ashjaee, Mehdi & Houshfar, Ehsan, 2022. "Thermal performance and heat transfer characteristics analyses of oxy-biogas combustion in a swirl stabilized boiler under various oxidizing environments," Energy, Elsevier, vol. 261(PA).
    11. You, Huailiang & Han, Jitian & Liu, Yang, 2019. "Performance assessment of a CCHP and multi-effect desalination system based on GT/ORC with inlet air precooling," Energy, Elsevier, vol. 185(C), pages 286-298.
    12. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    13. Abusoglu, Aysegul & Tozlu, Alperen & Anvari-Moghaddam, Amjad, 2021. "District heating and electricity production based on biogas produced from municipal WWTPs in Turkey: A comprehensive case study," Energy, Elsevier, vol. 223(C).
    14. Spyridon Achinas & Johan Horjus & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "A PESTLE Analysis of Biofuels Energy Industry in Europe," Sustainability, MDPI, vol. 11(21), pages 1-24, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Herz, Gregor & Reichelt, Erik & Jahn, Matthias, 2017. "Design and evaluation of a Fischer-Tropsch process for the production of waxes from biogas," Energy, Elsevier, vol. 132(C), pages 370-381.
    2. Gazda, Wiesław & Stanek, Wojciech, 2016. "Energy and environmental assessment of integrated biogas trigeneration and photovoltaic plant as more sustainable industrial system," Applied Energy, Elsevier, vol. 169(C), pages 138-149.
    3. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    4. Baccioli, Andrea & Ferrari, Lorenzo & Vizza, Francesco & Desideri, Umberto, 2019. "Potential energy recovery by integrating an ORC in a biogas plant," Applied Energy, Elsevier, vol. 256(C).
    5. Yin, Yongjun & Chen, Shaoxu & Li, Xusheng & Jiang, Bo & Zhao, Joe RuHe & Nong, Guangzai, 2021. "Comparative analysis of different CHP systems using biogas for the cassava starch plants," Energy, Elsevier, vol. 232(C).
    6. Jung, Choongsoo & Park, Jungsoo & Song, Soonho, 2015. "Performance and NOx emissions of a biogas-fueled turbocharged internal combustion engine," Energy, Elsevier, vol. 86(C), pages 186-195.
    7. da Costa, Roberto Berlini Rodrigues & Valle, Ramón Molina & Hernández, Juan J. & Malaquias, Augusto César Teixeira & Coronado, Christian J.R. & Pujatti, Fabrício José Pacheco, 2020. "Experimental investigation on the potential of biogas/ethanol dual-fuel spark-ignition engine for power generation: Combustion, performance and pollutant emission analysis," Applied Energy, Elsevier, vol. 261(C).
    8. Chinese, D. & Patrizio, P. & Nardin, G., 2014. "Effects of changes in Italian bioenergy promotion schemes for agricultural biogas projects: Insights from a regional optimization model," Energy Policy, Elsevier, vol. 75(C), pages 189-205.
    9. Ramírez-Arpide, Félix Rafael & Espinosa-Solares, Teodoro & Gallegos-Vázquez, Clemente & Santoyo-Cortés, Vinicio Horacio, 2019. "Bioenergy production from nopal cladodes and dairy cow manure on a farm-scale level: Challenges for its economic feasibility in Mexico," Renewable Energy, Elsevier, vol. 142(C), pages 383-392.
    10. Herbes, Carsten & Halbherr, Verena & Braun, Lorenz, 2018. "Factors influencing prices for heat from biogas plants," Applied Energy, Elsevier, vol. 221(C), pages 308-318.
    11. Sung-Min Kim & Ju-Hee Kim & Seung-Hoon Yoo, 2020. "Households’ Willingness to Pay for Substituting Natural Gas with Renewable Methane: A Contingent Valuation Experiment in South Korea," Energies, MDPI, vol. 13(12), pages 1-13, June.
    12. Kadam, Rahul & Panwar, N.L., 2017. "Recent advancement in biogas enrichment and its applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 892-903.
    13. Kang, Jun Young & Kang, Do Won & Kim, Tong Seop & Hur, Kwang Beom, 2014. "Comparative economic analysis of gas turbine-based power generation and combined heat and power systems using biogas fuel," Energy, Elsevier, vol. 67(C), pages 309-318.
    14. Andrea Baccioli & Lorenzo Ferrari & Romain Guiller & Oumayma Yousfi & Francesco Vizza & Umberto Desideri, 2019. "Feasibility Analysis of Bio-Methane Production in a Biogas Plant: A Case Study," Energies, MDPI, vol. 12(3), pages 1-16, February.
    15. Subramanian, K.A. & Mathad, Vinaya C. & Vijay, V.K. & Subbarao, P.M.V., 2013. "Comparative evaluation of emission and fuel economy of an automotive spark ignition vehicle fuelled with methane enriched biogas and CNG using chassis dynamometer," Applied Energy, Elsevier, vol. 105(C), pages 17-29.
    16. Wang, Hanxi & Xu, Jianling & Yu, Haixia & Liu, Xuejun & Yin, Wei & Liu, Yuanyuan & Liu, Zhongwei & Zhang, Tian, 2015. "Study of the application and methods for the comprehensive treatment of municipal solid waste in northeastern China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1881-1889.
    17. Landelle, Arnaud & Tauveron, Nicolas & Haberschill, Philippe & Revellin, Rémi & Colasson, Stéphane, 2017. "Organic Rankine cycle design and performance comparison based on experimental database," Applied Energy, Elsevier, vol. 204(C), pages 1172-1187.
    18. Lim, Cheolsoo & Kim, Daigon & Song, Changkeun & Kim, Jeongsoo & Han, Jinseok & Cha, Jun-Seok, 2015. "Performance and emission characteristics of a vehicle fueled with enriched biogas and natural gases," Applied Energy, Elsevier, vol. 139(C), pages 17-29.
    19. Yazan, Devrim Murat & Fraccascia, Luca & Mes, Martijn & Zijm, Henk, 2018. "Cooperation in manure-based biogas production networks: An agent-based modeling approach," Applied Energy, Elsevier, vol. 212(C), pages 820-833.
    20. Muhammad Asim & Faiza Kashif & Jamal Umer & Jahan Zeb Alvi & Muhammad Imran & Sheheryar Khan & Abdul Wasy Zia & Michael K. H. Leung, 2021. "Performance Assessment and Working Fluid Selection for Novel Integrated Vapor Compression Cycle and Organic Rankine Cycle for Ultra Low Grade Waste Heat Recovery," Sustainability, MDPI, vol. 13(21), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:275-:d:91522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.